File size: 25,293 Bytes
94a1f00
 
4d24dca
94a1f00
 
 
 
 
 
4d24dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443343
 
 
 
 
 
 
 
4d24dca
2443343
 
 
 
 
4d24dca
2443343
 
 
 
 
4d24dca
 
2443343
4d24dca
2443343
4d24dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a1f00
 
 
 
 
 
 
 
 
 
4d24dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a1f00
 
 
 
 
2443343
 
 
 
 
4d24dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a1f00
 
4d24dca
 
 
 
94a1f00
4d24dca
2443343
94a1f00
 
4d24dca
 
94a1f00
 
 
4d24dca
 
 
 
94a1f00
4d24dca
2443343
94a1f00
 
4d24dca
 
 
 
 
 
 
 
 
 
 
94a1f00
 
4d24dca
8743cca
4d24dca
 
 
 
8743cca
 
 
4d24dca
 
 
 
 
 
 
 
 
 
94a1f00
8743cca
4d24dca
8743cca
 
 
 
 
 
 
 
 
 
 
 
 
4d24dca
8743cca
 
 
4d24dca
8743cca
4d24dca
 
 
 
 
 
 
 
 
 
94a1f00
4d24dca
 
 
 
 
8743cca
4d24dca
 
 
 
 
 
 
 
 
8743cca
 
4d24dca
 
 
 
 
 
94a1f00
4d24dca
 
 
 
 
 
 
 
 
 
8743cca
4d24dca
 
 
 
 
 
 
 
 
 
94a1f00
8743cca
4d24dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8743cca
4d24dca
8743cca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from typing import List, Optional

from ..core.glicko2_ranking import analyze_device_glicko2_matches
from ..components.visualizations import clean_device_id


def create_head_to_head_battle_chart(
    device1: str,
    device2: str,
    device1_display: str,
    device2_display: str,
    token_wins_1: int,
    prompt_wins_1: int,
    combined_wins_1: int,
    total_matches: int,
):
    """Create an engaging head-to-head battle visualization."""

    # Calculate win percentages for both devices
    token_pct_1 = token_wins_1 / total_matches * 100
    token_pct_2 = 100 - token_pct_1

    prompt_pct_1 = prompt_wins_1 / total_matches * 100
    prompt_pct_2 = 100 - prompt_pct_1

    combined_pct_1 = combined_wins_1 / total_matches * 100
    combined_pct_2 = 100 - combined_pct_1

    # Create figure
    fig = go.Figure()

    # Add bars for device 1
    fig.add_trace(
        go.Bar(
            y=["Token Gen", "Prompt Proc", "Combined"],
            x=[token_pct_1, prompt_pct_1, combined_pct_1],
            name=device1_display,
            orientation="h",
            marker=dict(
                color="rgba(58, 71, 180, 0.8)",
                line=dict(color="rgba(58, 71, 180, 1.0)", width=2),
            ),
            text=[
                f"{token_pct_1:.1f}%",
                f"{prompt_pct_1:.1f}%",
                f"{combined_pct_1:.1f}%",
            ],
            textposition="inside",
            insidetextanchor="middle",
            hoverinfo="text",
            hovertext=[
                f"{device1_display}<br>Token Wins: {token_wins_1} ({token_pct_1:.1f}%)",
                f"{device1_display}<br>Prompt Wins: {prompt_wins_1} ({prompt_pct_1:.1f}%)",
                f"{device1_display}<br>Combined Wins: {combined_wins_1} ({combined_pct_1:.1f}%)",
            ],
            width=0.5,
        )
    )

    # Add bars for device 2
    token_wins_2 = total_matches - token_wins_1
    prompt_wins_2 = total_matches - prompt_wins_1
    combined_wins_2 = total_matches - combined_wins_1

    fig.add_trace(
        go.Bar(
            y=["Token Gen", "Prompt Proc", "Combined"],
            x=[-token_pct_2, -prompt_pct_2, -combined_pct_2],  # Negative to go left
            name=device2_display,
            orientation="h",
            marker=dict(
                color="rgba(231, 99, 99, 0.8)",
                line=dict(color="rgba(231, 99, 99, 1.0)", width=2),
            ),
            text=[
                f"{token_pct_2:.1f}%",
                f"{prompt_pct_2:.1f}%",
                f"{combined_pct_2:.1f}%",
            ],
            textposition="inside",
            insidetextanchor="middle",
            hoverinfo="text",
            hovertext=[
                f"{device2_display}<br>Token Wins: {token_wins_2} ({token_pct_2:.1f}%)",
                f"{device2_display}<br>Prompt Wins: {prompt_wins_2} ({prompt_pct_2:.1f}%)",
                f"{device2_display}<br>Combined Wins: {combined_wins_2} ({combined_pct_2:.1f}%)",
            ],
            width=0.5,
        )
    )

    # Design: Add center line and decorations
    fig.add_shape(
        type="line",
        x0=0,
        y0=-0.5,
        x1=0,
        y1=2.5,
        line=dict(color="black", width=2, dash="solid"),
    )

    # VS label in the middle
    # fig.add_annotation(
    #     x=0,
    #     y=1.5,
    #     text="VS",
    #     showarrow=False,
    #     font=dict(size=20, color="black", family="Arial Black"),
    #     bgcolor="rgba(255, 255, 255, 0.8)",
    #     bordercolor="black",
    #     borderwidth=2,
    #     borderpad=4,
    #     width=50,
    #     height=30,
    # )

    # Update layout for a battle-like appearance
    fig.update_layout(
        title=dict(
            text=f"⚔️ {device1_display} vs {device2_display} ⚔️",
            font=dict(size=24, family="Arial Black"),
            x=0.5,
        ),
        barmode="overlay",
        bargap=0.15,
        bargroupgap=0.1,
        legend=dict(x=0.5, y=1.05, xanchor="center", orientation="h"),
        xaxis=dict(
            title="Win Rate (%)",
            range=[-100, 100],
            tickvals=[-100, -75, -50, -25, 0, 25, 50, 75, 100],
            ticktext=["100%", "75%", "50%", "25%", "0%", "25%", "50%", "75%", "100%"],
            zeroline=True,
            zerolinewidth=2,
            zerolinecolor="black",
        ),
        yaxis=dict(title="", autorange="reversed"),
        plot_bgcolor="rgba(240, 240, 240, 0.8)",
        height=400,
        margin=dict(l=20, r=20, t=80, b=20),
        # annotations=[
        #     dict(
        #         x=-50,
        #         y="Token Gen",
        #         text=device2_display,
        #         showarrow=False,
        #         font=dict(
        #             size=14, color="rgba(231, 99, 99, 1.0)", family="Arial Black"
        #         ),
        #         align="center",
        #         xanchor="center",
        #     ),
        #     dict(
        #         x=50,
        #         y="Token Gen",
        #         text=device1_display,
        #         showarrow=False,
        #         font=dict(
        #             size=14, color="rgba(58, 71, 180, 1.0)", family="Arial Black"
        #         ),
        #         align="center",
        #         xanchor="center",
        #     ),
        # ],
    )

    return fig


def create_victory_badge(winner_device: str, loser_device: str, win_percentage: float):
    """Create a stylized victory badge."""
    badge_color = (
        "#FFD700"
        if win_percentage >= 75
        else "#C0C0C0" if win_percentage >= 50 else "#CD7F32"
    )
    badge_text = (
        "DOMINANT VICTORY"
        if win_percentage >= 75
        else "CLEAR WINNER" if win_percentage >= 50 else "NARROW VICTORY"
    )

    html = f"""
    <div style="display: flex; justify-content: center; margin: 20px 0;">
        <div style="
            background: linear-gradient(135deg, {badge_color} 0%, #FFFFFF 50%, {badge_color} 100%);
            border-radius: 16px;
            padding: 20px;
            box-shadow: 0 4px 8px rgba(0,0,0,0.2);
            text-align: center;
            border: 2px solid {badge_color};
            max-width: 90%;
        ">
            <div style="font-size: 24px; font-weight: bold; margin-bottom: 8px; font-family: 'Arial Black', sans-serif;">
                🏆 {badge_text} 🏆
            </div>
            <div style="font-size: 18px; font-weight: bold; color: #333;">
                {winner_device}
            </div>
            <div style="font-size: 14px; margin: 8px 0;">
                defeated
            </div>
            <div style="font-size: 16px; color: #555;">
                {loser_device}
            </div>
            <div style="font-size: 20px; font-weight: bold; margin-top: 8px; color: #333;">
                {win_percentage:.1f}% Win Rate
            </div>
        </div>
    </div>
    """
    return html


def create_model_performance_chart(
    matches_df, device1, device2, device1_display, device2_display, top_n=8
):
    """Create an improved model performance comparison chart with vertical models and side-by-side bars."""
    # Group by model and calculate mean for both devices
    token_cols = ["Model", "Token Generation 1", "Token Generation 2"]
    prompt_cols = ["Model", "Prompt Processing 1", "Prompt Processing 2"]

    # Ensure all required columns exist
    if not all(col in matches_df.columns for col in token_cols + prompt_cols[1:]):
        return None

    # Prepare data with basic metrics
    agg_dict = {
        "Token Generation 1": "mean",
        "Token Generation 2": "mean",
        "Prompt Processing 1": "mean",
        "Prompt Processing 2": "mean",
        "Model File Size": "first",
    }

    # Group by model and aggregate
    grouped = matches_df.groupby("Model").agg(agg_dict).reset_index()

    # Sort by model name alphabetically
    grouped = grouped.sort_values("Model File Size", ascending=False)

    # Take first top_n models
    if len(grouped) > top_n:
        grouped = grouped.head(top_n)

    # Create figure
    fig = go.Figure()

    # Use model names directly
    models = grouped["Model"].tolist()

    token_gen_1 = grouped["Token Generation 1"].tolist()
    token_gen_2 = grouped["Token Generation 2"].tolist()
    prompt_proc_1 = grouped["Prompt Processing 1"].tolist()
    prompt_proc_2 = grouped["Prompt Processing 2"].tolist()

    # Add Token Generation traces
    fig.add_trace(
        go.Bar(
            x=token_gen_1,
            y=models,
            name=f"{device1_display} Token Gen",
            orientation="h",
            marker=dict(color="rgba(58, 71, 180, 0.8)"),
            hovertemplate="%{y}<br>%{x:.2f} tokens/sec<extra></extra>",
            legendgroup="device1",
            offsetgroup=1,
            xaxis="x",
        )
    )

    fig.add_trace(
        go.Bar(
            x=token_gen_2,
            y=models,
            name=f"{device2_display} Token Gen",
            orientation="h",
            marker=dict(color="rgba(231, 99, 99, 0.8)"),
            hovertemplate="%{y}<br>%{x:.2f} tokens/sec<extra></extra>",
            legendgroup="device2",
            offsetgroup=2,
            xaxis="x",
        )
    )

    # Add Prompt Processing traces
    fig.add_trace(
        go.Bar(
            x=prompt_proc_1,
            y=models,
            name=f"{device1_display} Prompt Proc",
            orientation="h",
            marker=dict(color="rgba(58, 71, 180, 0.4)"),
            hovertemplate="%{y}<br>%{x:.2f} tokens/sec<extra></extra>",
            legendgroup="device1",
            offsetgroup=1,
            xaxis="x2",
            showlegend=False,
        )
    )

    fig.add_trace(
        go.Bar(
            x=prompt_proc_2,
            y=models,
            name=f"{device2_display} Prompt Proc",
            orientation="h",
            marker=dict(color="rgba(231, 99, 99, 0.4)"),
            hovertemplate="%{y}<br>%{x:.2f} tokens/sec<extra></extra>",
            legendgroup="device2",
            offsetgroup=2,
            xaxis="x2",
            showlegend=False,
        )
    )

    # Create layout with two x-axes
    fig.update_layout(
        title_text="📊 Performance Breakdown by Model",
        grid=dict(rows=1, columns=2, pattern="independent"),
        legend=dict(orientation="h", yanchor="bottom", y=1.12, xanchor="right", x=1),
        height=max(
            350, 50 * len(models) + 120
        ),  # Dynamic height based on number of models
        margin=dict(l=20, r=20, t=80, b=50),
        xaxis=dict(
            title="Token Generation (tokens/sec)", side="bottom", domain=[0, 0.48]
        ),
        xaxis2=dict(
            title="Prompt Processing (tokens/sec)", side="bottom", domain=[0.52, 1]
        ),
        yaxis=dict(title="", autorange="reversed"),
    )

    # Add a center divider
    fig.add_shape(
        type="line",
        x0=0.5,
        y0=0,
        x1=0.5,
        y1=1,
        xref="paper",
        yref="paper",
        line=dict(color="rgba(0,0,0,0.2)", width=1, dash="dash"),
    )

    # Add headers for each section
    fig.add_annotation(
        x=0.4,
        y=1.08,
        xanchor="right",
        xref="paper",
        yref="paper",
        text="Token Generation",
        showarrow=False,
        font=dict(
            size=14,
            color="rgba(58, 71, 180, 1.0)",
            family="Arial, sans-serif",
            weight="bold",
        ),
    )

    fig.add_annotation(
        x=0.6,
        y=1.08,
        xanchor="left",
        xref="paper",
        yref="paper",
        text="Prompt Processing",
        showarrow=False,
        font=dict(
            size=14,
            color="rgba(231, 99, 99, 1.0)",
            family="Arial, sans-serif",
            weight="bold",
        ),
    )

    # Better styling for the model names
    fig.update_yaxes(
        tickfont=dict(size=12, family="Arial, sans-serif"), gridcolor="rgba(0,0,0,0.05)"
    )

    return fig


def render_device_comparison(df: pd.DataFrame, normalized_device_ids: List[str]):
    """
    Render a component for comparing two devices and analyzing their matches.

    Args:
        df: DataFrame containing benchmark data
        normalized_device_ids: List of normalized device IDs to select from
    """
    st.title("⚔️ Device Duel Arena")

    # Add dramatic introduction with some CSS styling
    st.markdown(
        """
    <div style="text-align: center; padding: 10px; margin-bottom: 20px; 
                background: linear-gradient(135deg, #f6f8fa 0%, #e9ecef 100%); 
                border-radius: 10px; border: 1px solid #dee2e6;">
        <p style="font-size: 16px; font-style: italic; color: #495057;">
            Welcome to the arena where devices face off in direct comparison! 
           Choose any two and see how they stack up. 
        </p>
    </div>
    """,
        unsafe_allow_html=True,
    )

    # Create mapping of normalized IDs to display names
    device_display_names = {
        device_id: clean_device_id(device_id) for device_id in normalized_device_ids
    }

    # Sort device IDs alphabetically by their display names
    sorted_device_ids = sorted(
        normalized_device_ids, key=lambda x: device_display_names[x].lower()
    )

    # Create two columns for device selection with battle-themed styling
    st.markdown(
        """
    <style>
    .device-select-header {
        font-weight: bold;
        font-size: 18px;
        margin-bottom: 10px;
        text-align: center;
        padding: 5px;
        border-radius: 5px;
    }
    .device1-header {
        background-color: rgba(58, 71, 180, 0.2);
        border-left: 4px solid rgba(58, 71, 180, 1.0);
    }
    .device2-header {
        background-color: rgba(231, 99, 99, 0.2);
        border-left: 4px solid rgba(231, 99, 99, 1.0);
    }
    </style>
    """,
        unsafe_allow_html=True,
    )

    col1, vs_col, col2 = st.columns([0.45, 0.1, 0.45])

    with vs_col:
        st.markdown(
            """
        <div style="display: flex; height: 100%; align-items: center; justify-content: center;">
            <div style="font-size: 24px; font-weight: bold; color: #555;">VS</div>
        </div>
        """,
            unsafe_allow_html=True,
        )

    with col1:
        st.markdown(
            '<div class="device-select-header device1-header">CHALLENGER</div>',
            unsafe_allow_html=True,
        )
        device1 = st.selectbox(
            "First Device",
            options=sorted_device_ids,
            format_func=lambda x: device_display_names[x],
            key="device_compare_1",
            index=None,
            placeholder="Select a device ...",
        )

    with col2:
        st.markdown(
            '<div class="device-select-header device2-header">OPPONENT</div>',
            unsafe_allow_html=True,
        )
        device2 = st.selectbox(
            "Second Device",
            options=sorted_device_ids,
            format_func=lambda x: device_display_names[x],
            key="device_compare_2",
            index=None,
            placeholder="Select a device ...",
        )

    # Button to analyze matches with a more exciting style
    button_col1, button_col2, button_col3 = st.columns([0.3, 0.4, 0.3])
    with button_col2:
        duel_button = st.button(
            "️Start",
            key="analyze_matches_btn",
            use_container_width=True,
        )

    if duel_button:
        # Validate device selection
        if not device1 or not device2:
            st.error("Please select two devices to battle!")
            return
        elif device1 == device2:
            st.error("Please select two different devices to compare.")
            return

        # Create dramatic divider
        st.markdown(
            """
        <div style="text-align: center; margin: 20px 0;">
            <div style="font-size: 24px; font-weight: bold; color: #333;">⚔️ BATTLE RESULTS ⚔️</div>
            <div style="height: 4px; background: linear-gradient(90deg, rgba(58,71,180,1) 0%, rgba(231,99,99,1) 100%); margin: 10px 0;"></div>
        </div>
        """,
            unsafe_allow_html=True,
        )

        with st.spinner(
            f"⚔️ Battle in progress between {device_display_names[device1]} and {device_display_names[device2]}..."
        ):
            try:
                # Analyze matches using Glicko-2
                matches_df = analyze_device_glicko2_matches(df, device1, device2)

                if not matches_df.empty:
                    # Show summary statistics
                    total_matches = len(matches_df)

                    # Check for required columns before calculating metrics
                    if (
                        "Token Winner" in matches_df.columns
                        and "Prompt Winner" in matches_df.columns
                        and "Combined Winner" in matches_df.columns
                    ):
                        token_wins_1 = sum(matches_df["Token Winner"] == device1)
                        prompt_wins_1 = sum(matches_df["Prompt Winner"] == device1)
                        combined_wins_1 = sum(matches_df["Combined Winner"] == device1)

                        # Display total matches info
                        st.markdown(
                            f"""
                        <div style="text-align: center; padding: 10px; background-color: #f8f9fa; 
                                    border-radius: 5px; margin: 10px 0; border: 1px solid #dee2e6;">
                            <span style="font-size: 16px; font-weight: bold;">Total Matches: {total_matches}</span>
                        </div>
                        """,
                            unsafe_allow_html=True,
                        )

                        # Show victory badge for the overall winner
                        winner_device = (
                            device1 if combined_wins_1 > total_matches / 2 else device2
                        )
                        loser_device = device2 if winner_device == device1 else device1

                        winner_display = device_display_names[winner_device]
                        loser_display = device_display_names[loser_device]

                        win_percentage = (
                            (combined_wins_1 / total_matches * 100)
                            if winner_device == device1
                            else (
                                (total_matches - combined_wins_1) / total_matches * 100
                            )
                        )

                        st.markdown(
                            create_victory_badge(
                                winner_display, loser_display, win_percentage
                            ),
                            unsafe_allow_html=True,
                        )

                        # Create battle visualization
                        battle_fig = create_head_to_head_battle_chart(
                            device1,
                            device2,
                            device_display_names[device1],
                            device_display_names[device2],
                            token_wins_1,
                            prompt_wins_1,
                            combined_wins_1,
                            total_matches,
                        )

                        st.plotly_chart(battle_fig, use_container_width=True)

                        # Replace the model-specific charts with the new integrated version
                        model_performance_chart = create_model_performance_chart(
                            matches_df,
                            device1,
                            device2,
                            device_display_names[device1],
                            device_display_names[device2],
                        )

                        if model_performance_chart:
                            st.plotly_chart(
                                model_performance_chart, use_container_width=True
                            )

                        # Show the detailed match table
                        with st.expander("View Detailed Match Results", expanded=False):
                            st.markdown("#### All Match Data")

                            # Define display columns for Glicko-2
                            display_cols = [
                                "Model",
                                "Token Generation 1",
                                "Token Generation 2",
                                "Token Winner",
                                "Token Win Prob",
                                "Prompt Processing 1",
                                "Prompt Processing 2",
                                "Prompt Winner",
                                "Prompt Win Prob",
                                "Combined Winner",
                                "Combined Win Prob",
                                "Platform 1",
                                "Platform 2",
                            ]

                            # Ensure all columns exist in the dataframe
                            valid_cols = [
                                col for col in display_cols if col in matches_df.columns
                            ]

                            if valid_cols:
                                # Rename some columns for better display
                                matches_display = matches_df[valid_cols].copy()

                                # Define a rename mapping but only apply for columns that exist
                                rename_mapping = {
                                    "Token Generation 1": f"{device_display_names[device1]} Token Gen",
                                    "Token Generation 2": f"{device_display_names[device2]} Token Gen",
                                    "Prompt Processing 1": f"{device_display_names[device1]} Prompt Proc",
                                    "Prompt Processing 2": f"{device_display_names[device2]} Prompt Proc",
                                    "Platform 1": f"{device_display_names[device1]} Platform",
                                    "Platform 2": f"{device_display_names[device2]} Platform",
                                    "Token Win Prob": "Device 1 Token Win Prob",
                                    "Prompt Win Prob": "Device 1 Prompt Win Prob",
                                    "Combined Win Prob": "Device 1 Combined Win Prob",
                                }

                                # Only rename columns that exist in the dataframe
                                rename_filtered = {
                                    k: v
                                    for k, v in rename_mapping.items()
                                    if k in matches_display.columns
                                }
                                matches_display = matches_display.rename(
                                    columns=rename_filtered
                                )

                                # Round any numeric columns for better display
                                for col in matches_display.columns:
                                    if matches_display[col].dtype in [
                                        "float64",
                                        "float32",
                                    ]:
                                        matches_display[col] = matches_display[
                                            col
                                        ].round(2)

                                st.dataframe(
                                    matches_display,
                                    use_container_width=True,
                                    height=400,
                                )
                            else:
                                st.warning(
                                    "No valid columns found for display in the match data."
                                )

                        # # Platform breakdown if available
                        # if "Platform 2" in matches_df.columns:
                        #     with st.expander("Platform Distribution", expanded=False):
                        #         platform_counts = matches_df[
                        #             "Platform 2"
                        #         ].value_counts()
                        #         st.bar_chart(platform_counts)
                    else:
                        st.warning("Winner information is missing from the match data.")
                else:
                    st.error(
                        f"No matches found between {device_display_names[device1]} and {device_display_names[device2]}."
                    )
                    st.info(
                        "Try selecting different devices or checking if they both have benchmark data for the same models."
                    )
            except Exception as e:
                st.error(f"An error occurred during match analysis: {str(e)}")
                st.info("Please try with different devices.")