ZongqianLi commited on
Commit
e474be5
Β·
verified Β·
1 Parent(s): d7e29e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py CHANGED
@@ -1,13 +1,45 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
  from TransformationQA_ZongqianLi.transformationqa import create_qa_database
 
 
 
4
 
5
  st.markdown("# πŸŽ“ Auto-generating Question-Answering Datasets with Domain-Specific Knowledge for Language Models in Scientific Tasks", unsafe_allow_html=True)
6
 
 
 
 
7
  # Transformation Algorithm
 
8
  st.markdown('## πŸ–₯️ QA Dataset Auto Generation', unsafe_allow_html=True)
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  # Question Answering
 
11
  st.markdown('## πŸ“– Question Answering', unsafe_allow_html=True)
12
  st.markdown('### Select a model: ', unsafe_allow_html=True)
13
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
  from TransformationQA_ZongqianLi.transformationqa import create_qa_database
4
+ from numpy import linspace
5
+ import jsonlines
6
+ import json
7
 
8
  st.markdown("# πŸŽ“ Auto-generating Question-Answering Datasets with Domain-Specific Knowledge for Language Models in Scientific Tasks", unsafe_allow_html=True)
9
 
10
+
11
+
12
+ ##########
13
  # Transformation Algorithm
14
+ ##########
15
  st.markdown('## πŸ–₯️ QA Dataset Auto Generation', unsafe_allow_html=True)
16
 
17
+ cde_lst = ["./CDE_properties.jsonl"]
18
+ paper_lst = ["./reference_paper.json"]
19
+
20
+ st.session_state['cde'] = "./CDE_properties.jsonl"
21
+ st.session_state['cde'] = st.selectbox("ChemDataExtractor generated database path:", cde_lst)
22
+ st.write("Example of the ChemDataExtractor generated database: ")
23
+ with open(st.session_state['cde'], 'r') as file:
24
+ for line in file:
25
+ json_data = json.loads(line.strip())
26
+ json_string = json.dumps(json_data, indent=4)
27
+ st.text_area("", value=json_string, height=100)
28
+
29
+ paper = st.selectbox("Paper collection path:", paper_lst)
30
+
31
+ databases = []
32
+ with open(args.databases_location,'r+', encoding = "utf-8") as f:
33
+ for item in jsonlines.Reader(f):
34
+ databases.append(item)
35
+
36
+
37
+
38
+
39
+
40
+ ##########
41
  # Question Answering
42
+ ##########
43
  st.markdown('## πŸ“– Question Answering', unsafe_allow_html=True)
44
  st.markdown('### Select a model: ', unsafe_allow_html=True)
45