Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,41 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
]
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
"-scmedium",
|
18 |
-
"-sclarge"
|
19 |
-
]
|
20 |
-
|
21 |
-
finetune_lst = [
|
22 |
-
"-squad",
|
23 |
-
"-scqa1",
|
24 |
-
"-scqa2"
|
25 |
-
]
|
26 |
-
|
27 |
-
size = st.selectbox("Choose a model size: ", size_lst)
|
28 |
-
cased = st.selectbox("Whether distinguish upper and lowercase letters: ", cased_lst)
|
29 |
-
fpretrain = st.selectbox("Further pretrained on a solar cell corpus: ", fpretrain_lst)
|
30 |
-
finetune = st.selectbox("Finetuned on a QA dataset: ", finetune_lst)
|
31 |
-
|
32 |
if fpretrain == "None":
|
33 |
model = "".join(["ZongqianLi/bert", size, cased, finetune])
|
34 |
else:
|
35 |
model = "".join(["ZongqianLi/bert", size, cased, fpretrain, finetune])
|
36 |
|
|
|
37 |
st.write(f"Your selected model: {model}")
|
38 |
|
|
|
39 |
pipe = pipeline("question-answering", model=model)
|
40 |
|
|
|
41 |
question = st.text_input("Enter your question here")
|
42 |
context = st.text_area("Enter the context here")
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# 定义模型配置选项
|
5 |
+
size_lst = ["-base", "-large"]
|
6 |
+
cased_lst = ["-cased", "-uncased"]
|
7 |
+
fpretrain_lst = ["None", "-scsmall", "-scmedium", "-sclarge"]
|
8 |
+
finetune_lst = ["-squad", "-scqa1", "-scqa2"]
|
9 |
+
|
10 |
+
# 为每个选项创建下拉菜单
|
11 |
+
size = st.selectbox("Choose a model size:", size_lst)
|
12 |
+
cased = st.selectbox("Whether distinguish upper and lowercase letters:", cased_lst)
|
13 |
+
fpretrain = st.selectbox("Further pretrained on a solar cell corpus:", fpretrain_lst)
|
14 |
+
finetune = st.selectbox("Finetuned on a QA dataset:", finetune_lst)
|
15 |
+
|
16 |
+
# 根据选择构建模型名称
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
if fpretrain == "None":
|
18 |
model = "".join(["ZongqianLi/bert", size, cased, finetune])
|
19 |
else:
|
20 |
model = "".join(["ZongqianLi/bert", size, cased, fpretrain, finetune])
|
21 |
|
22 |
+
# 显示用户选择的模型
|
23 |
st.write(f"Your selected model: {model}")
|
24 |
|
25 |
+
# 加载问答模型
|
26 |
pipe = pipeline("question-answering", model=model)
|
27 |
|
28 |
+
# 获取用户输入的问题和上下文
|
29 |
question = st.text_input("Enter your question here")
|
30 |
context = st.text_area("Enter the context here")
|
31 |
|
32 |
+
# 添加一个按钮,用户点击后执行问答
|
33 |
+
if st.button('Answer the Question'):
|
34 |
+
if context and question:
|
35 |
+
out = pipe({
|
36 |
+
'question': question,
|
37 |
+
'context': context
|
38 |
+
})
|
39 |
+
st.json(out)
|
40 |
+
else:
|
41 |
+
st.write("Please enter both a question and context.")
|