Added torch no_grad
Browse files
app.py
CHANGED
@@ -15,12 +15,14 @@ for model_name, filename in model_options.items():
|
|
15 |
print(f"Loading {model_name} ...")
|
16 |
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename, token=hf_token)
|
17 |
models[model_name] = SmolLM.load_from_checkpoint(checkpoint_path)
|
|
|
18 |
|
19 |
|
20 |
def classify_sentence(sentence, model_choice):
|
21 |
model = models[model_choice]
|
22 |
-
inputs = model.tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
|
23 |
-
|
|
|
24 |
confidence = torch.sigmoid(logits).item() * 100
|
25 |
confidence_to_display = confidence if confidence > 50.0 else 100 - confidence
|
26 |
label = "Complete" if confidence > 50.0 else "Incomplete"
|
|
|
15 |
print(f"Loading {model_name} ...")
|
16 |
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename, token=hf_token)
|
17 |
models[model_name] = SmolLM.load_from_checkpoint(checkpoint_path)
|
18 |
+
models[model_name].eval()
|
19 |
|
20 |
|
21 |
def classify_sentence(sentence, model_choice):
|
22 |
model = models[model_choice]
|
23 |
+
inputs = model.tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, use_fast=True)
|
24 |
+
with torch.no_grad():
|
25 |
+
logits = model(inputs)
|
26 |
confidence = torch.sigmoid(logits).item() * 100
|
27 |
confidence_to_display = confidence if confidence > 50.0 else 100 - confidence
|
28 |
label = "Complete" if confidence > 50.0 else "Incomplete"
|