Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
fc44d4b
1
Parent(s):
dfeea18
remove_type_annotator
Browse files- app.py +2 -3
- example.py +2 -2
- setup.sh +2 -11
- triplaneturbo_executable/extern/sd_dual_triplane_modules.py +10 -11
- triplaneturbo_executable/models/networks.py +2 -3
- triplaneturbo_executable/pipelines/triplaneturbo_text_to_3d.py +38 -43
- triplaneturbo_executable/utils/general_utils.py +29 -12
- triplaneturbo_executable/utils/mesh.py +75 -63
- triplaneturbo_executable/utils/mesh_exporter.py +26 -30
- triplaneturbo_executable/utils/saving.py +34 -53
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import os
|
|
|
2 |
import subprocess
|
3 |
import sys
|
4 |
try:
|
5 |
import spaces
|
6 |
except:
|
7 |
pass
|
8 |
-
os.environ["PYDANTIC_STRICT_TYPE_CHECKING"] = "0"
|
9 |
|
10 |
# Check if setup has been run
|
11 |
setup_marker = ".setup_complete"
|
@@ -23,7 +23,6 @@ if not os.path.exists(setup_marker):
|
|
23 |
|
24 |
import torch
|
25 |
import gradio as gr
|
26 |
-
from typing import Tuple, List, Dict, Any, Optional
|
27 |
from collections import deque
|
28 |
from diffusers import StableDiffusionPipeline
|
29 |
|
@@ -58,7 +57,7 @@ def initialize_pipeline():
|
|
58 |
return PIPELINE
|
59 |
|
60 |
@spaces.GPU
|
61 |
-
def generate_3d_mesh(prompt
|
62 |
"""Generate 3D mesh from text prompt"""
|
63 |
global PIPELINE, OBJ_FILE_QUEUE
|
64 |
|
|
|
1 |
import os
|
2 |
+
|
3 |
import subprocess
|
4 |
import sys
|
5 |
try:
|
6 |
import spaces
|
7 |
except:
|
8 |
pass
|
|
|
9 |
|
10 |
# Check if setup has been run
|
11 |
setup_marker = ".setup_complete"
|
|
|
23 |
|
24 |
import torch
|
25 |
import gradio as gr
|
|
|
26 |
from collections import deque
|
27 |
from diffusers import StableDiffusionPipeline
|
28 |
|
|
|
57 |
return PIPELINE
|
58 |
|
59 |
@spaces.GPU
|
60 |
+
def generate_3d_mesh(prompt):
|
61 |
"""Generate 3D mesh from text prompt"""
|
62 |
global PIPELINE, OBJ_FILE_QUEUE
|
63 |
|
example.py
CHANGED
@@ -17,8 +17,8 @@ from triplaneturbo_executable import TriplaneTurboTextTo3DPipeline, TriplaneTurb
|
|
17 |
|
18 |
# Initialize configuration and parameters
|
19 |
prompt = "a beautiful girl"
|
20 |
-
output_dir = "
|
21 |
-
adapter_name_or_path = "
|
22 |
num_results_per_prompt = 1
|
23 |
seed = 42
|
24 |
device = "cuda"
|
|
|
17 |
|
18 |
# Initialize configuration and parameters
|
19 |
prompt = "a beautiful girl"
|
20 |
+
output_dir = "output"
|
21 |
+
adapter_name_or_path = "pretrained/triplane_turbo_sd_v1.pth"
|
22 |
num_results_per_prompt = 1
|
23 |
seed = 42
|
24 |
device = "cuda"
|
setup.sh
CHANGED
@@ -17,12 +17,12 @@ pip install --force-reinstall -v "numpy==1.25.2"
|
|
17 |
# cd ..
|
18 |
# cd ..
|
19 |
|
20 |
-
|
21 |
|
22 |
echo "Installing other requirements..."
|
23 |
pip install -r requirements.txt
|
24 |
|
25 |
-
|
26 |
echo "Installing pre-compiled DISO wheel package..."
|
27 |
huggingface-cli download --resume-download ZhiyuanthePony/TriplaneTurbo \
|
28 |
--include "diso-0.1.4-*.whl" \
|
@@ -30,12 +30,3 @@ huggingface-cli download --resume-download ZhiyuanthePony/TriplaneTurbo \
|
|
30 |
--local-dir-use-symlinks False
|
31 |
|
32 |
pip install ./diso_package/diso-0.1.4-*.whl
|
33 |
-
echo "Setup completed successfully!"
|
34 |
-
|
35 |
-
echo "Installing compatible dependency versions..."
|
36 |
-
pip uninstall -y pydantic
|
37 |
-
pip install pydantic==1.10.8 # Install compatible older version
|
38 |
-
|
39 |
-
# Ensure Gradio and other dependencies are installed correctly
|
40 |
-
pip install "gradio>=4.0.0,<5.0.0"
|
41 |
-
pip install "fastapi<0.103.0" # Ensure compatible FastAPI version
|
|
|
17 |
# cd ..
|
18 |
# cd ..
|
19 |
|
20 |
+
echo "Setup completed successfully!"
|
21 |
|
22 |
echo "Installing other requirements..."
|
23 |
pip install -r requirements.txt
|
24 |
|
25 |
+
# 从您的Hugging Face仓库下载并安装预编译的DISO wheel
|
26 |
echo "Installing pre-compiled DISO wheel package..."
|
27 |
huggingface-cli download --resume-download ZhiyuanthePony/TriplaneTurbo \
|
28 |
--include "diso-0.1.4-*.whl" \
|
|
|
30 |
--local-dir-use-symlinks False
|
31 |
|
32 |
pip install ./diso_package/diso-0.1.4-*.whl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
triplaneturbo_executable/extern/sd_dual_triplane_modules.py
CHANGED
@@ -2,7 +2,6 @@ import re
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from dataclasses import dataclass
|
5 |
-
from typing import Optional, Union, Tuple
|
6 |
|
7 |
from diffusers.models.attention_processor import Attention
|
8 |
from diffusers import (
|
@@ -39,9 +38,9 @@ class LoRALinearLayerwBias(nn.Module):
|
|
39 |
in_features: int,
|
40 |
out_features: int,
|
41 |
rank: int = 4,
|
42 |
-
network_alpha
|
43 |
-
device
|
44 |
-
dtype
|
45 |
with_bias: bool = False
|
46 |
):
|
47 |
super().__init__()
|
@@ -105,10 +104,10 @@ class TriplaneLoRAConv2dLayer(nn.Module):
|
|
105 |
in_features: int,
|
106 |
out_features: int,
|
107 |
rank: int = 4,
|
108 |
-
kernel_size
|
109 |
-
stride
|
110 |
-
padding
|
111 |
-
network_alpha
|
112 |
with_bias: bool = False,
|
113 |
locon_type: str = "hexa_v1", #hexa_v2, vanilla_v1, vanilla_v2
|
114 |
):
|
@@ -220,7 +219,7 @@ class TriplaneSelfAttentionLoRAAttnProcessor(nn.Module):
|
|
220 |
self,
|
221 |
hidden_size: int,
|
222 |
rank: int = 4,
|
223 |
-
network_alpha
|
224 |
with_bias: bool = False,
|
225 |
lora_type: str = "hexa_v1", # vanilla,
|
226 |
):
|
@@ -492,7 +491,7 @@ class TriplaneCrossAttentionLoRAAttnProcessor(nn.Module):
|
|
492 |
hidden_size: int,
|
493 |
cross_attention_dim: int,
|
494 |
rank: int = 4,
|
495 |
-
network_alpha
|
496 |
with_bias: bool = False,
|
497 |
lora_type: str = "hexa_v1", # vanilla,
|
498 |
):
|
@@ -713,7 +712,7 @@ class OneStepTriplaneDualStableDiffusion(nn.Module):
|
|
713 |
"""
|
714 |
def __init__(
|
715 |
self,
|
716 |
-
config
|
717 |
vae: AutoencoderKL,
|
718 |
unet: UNet2DConditionModel,
|
719 |
):
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from dataclasses import dataclass
|
|
|
5 |
|
6 |
from diffusers.models.attention_processor import Attention
|
7 |
from diffusers import (
|
|
|
38 |
in_features: int,
|
39 |
out_features: int,
|
40 |
rank: int = 4,
|
41 |
+
network_alpha=None,
|
42 |
+
device=None,
|
43 |
+
dtype=None,
|
44 |
with_bias: bool = False
|
45 |
):
|
46 |
super().__init__()
|
|
|
104 |
in_features: int,
|
105 |
out_features: int,
|
106 |
rank: int = 4,
|
107 |
+
kernel_size = (1, 1),
|
108 |
+
stride = (1, 1),
|
109 |
+
padding = 0,
|
110 |
+
network_alpha = None,
|
111 |
with_bias: bool = False,
|
112 |
locon_type: str = "hexa_v1", #hexa_v2, vanilla_v1, vanilla_v2
|
113 |
):
|
|
|
219 |
self,
|
220 |
hidden_size: int,
|
221 |
rank: int = 4,
|
222 |
+
network_alpha=None,
|
223 |
with_bias: bool = False,
|
224 |
lora_type: str = "hexa_v1", # vanilla,
|
225 |
):
|
|
|
491 |
hidden_size: int,
|
492 |
cross_attention_dim: int,
|
493 |
rank: int = 4,
|
494 |
+
network_alpha = None,
|
495 |
with_bias: bool = False,
|
496 |
lora_type: str = "hexa_v1", # vanilla,
|
497 |
):
|
|
|
712 |
"""
|
713 |
def __init__(
|
714 |
self,
|
715 |
+
config,
|
716 |
vae: AutoencoderKL,
|
717 |
unet: UNet2DConditionModel,
|
718 |
):
|
triplaneturbo_executable/models/networks.py
CHANGED
@@ -3,7 +3,6 @@ import torch.nn as nn
|
|
3 |
import torch.nn.functional as F
|
4 |
from ..utils.general_utils import config_to_primitive
|
5 |
from dataclasses import dataclass
|
6 |
-
from typing import Optional, Literal
|
7 |
|
8 |
def get_activation(name):
|
9 |
if name is None:
|
@@ -21,7 +20,7 @@ def get_activation(name):
|
|
21 |
|
22 |
|
23 |
class VanillaMLP(nn.Module):
|
24 |
-
def __init__(self, dim_in
|
25 |
super().__init__()
|
26 |
# Convert dict to MLPConfig if needed
|
27 |
if isinstance(config, dict):
|
@@ -70,7 +69,7 @@ class MLPConfig:
|
|
70 |
n_neurons: int = 64
|
71 |
n_hidden_layers: int = 2
|
72 |
|
73 |
-
def get_mlp(input_dim
|
74 |
"""Create MLP network based on config"""
|
75 |
# Convert dict to MLPConfig
|
76 |
if isinstance(config, dict):
|
|
|
3 |
import torch.nn.functional as F
|
4 |
from ..utils.general_utils import config_to_primitive
|
5 |
from dataclasses import dataclass
|
|
|
6 |
|
7 |
def get_activation(name):
|
8 |
if name is None:
|
|
|
20 |
|
21 |
|
22 |
class VanillaMLP(nn.Module):
|
23 |
+
def __init__(self, dim_in, dim_out, config):
|
24 |
super().__init__()
|
25 |
# Convert dict to MLPConfig if needed
|
26 |
if isinstance(config, dict):
|
|
|
69 |
n_neurons: int = 64
|
70 |
n_hidden_layers: int = 2
|
71 |
|
72 |
+
def get_mlp(input_dim, output_dim, config):
|
73 |
"""Create MLP network based on config"""
|
74 |
# Convert dict to MLPConfig
|
75 |
if isinstance(config, dict):
|
triplaneturbo_executable/pipelines/triplaneturbo_text_to_3d.py
CHANGED
@@ -4,7 +4,6 @@ import json
|
|
4 |
from tqdm import tqdm
|
5 |
|
6 |
import torch
|
7 |
-
from typing import *
|
8 |
from dataclasses import dataclass, field
|
9 |
from diffusers import StableDiffusionPipeline
|
10 |
|
@@ -21,11 +20,6 @@ class TriplaneTurboTextTo3DPipelineConfig:
|
|
21 |
# Basic pipeline settings
|
22 |
base_model_name_or_path: str = "stabilityai/stable-diffusion-2-1-base"
|
23 |
|
24 |
-
num_inference_steps: int = 4
|
25 |
-
num_results_per_prompt: int = 1
|
26 |
-
latent_channels: int = 4
|
27 |
-
latent_height: int = 64
|
28 |
-
latent_width: int = 64
|
29 |
|
30 |
# Training/sampling settings
|
31 |
num_steps_sampling: int = 4
|
@@ -72,7 +66,7 @@ class TriplaneTurboTextTo3DPipelineConfig:
|
|
72 |
color_activation: str = "sigmoid-mipnerf"
|
73 |
|
74 |
@classmethod
|
75 |
-
def from_pretrained(cls, pretrained_path
|
76 |
"""Load config from pretrained path"""
|
77 |
config_path = os.path.join(pretrained_path, "config.json")
|
78 |
if os.path.exists(config_path):
|
@@ -91,11 +85,11 @@ class TriplaneTurboTextTo3DPipeline(Pipeline):
|
|
91 |
|
92 |
def __init__(
|
93 |
self,
|
94 |
-
geometry
|
95 |
-
material
|
96 |
-
base_pipeline
|
97 |
-
sample_scheduler
|
98 |
-
isosurface_helper
|
99 |
**kwargs,
|
100 |
):
|
101 |
super().__init__()
|
@@ -116,7 +110,7 @@ class TriplaneTurboTextTo3DPipeline(Pipeline):
|
|
116 |
@classmethod
|
117 |
def from_pretrained(
|
118 |
cls,
|
119 |
-
pretrained_model_name_or_path
|
120 |
**kwargs,
|
121 |
):
|
122 |
"""
|
@@ -197,10 +191,10 @@ class TriplaneTurboTextTo3DPipeline(Pipeline):
|
|
197 |
|
198 |
def encode_prompt(
|
199 |
self,
|
200 |
-
prompt
|
201 |
-
device
|
202 |
-
num_results_per_prompt
|
203 |
-
)
|
204 |
"""
|
205 |
Encodes the prompt into text encoder hidden states.
|
206 |
|
@@ -227,14 +221,13 @@ class TriplaneTurboTextTo3DPipeline(Pipeline):
|
|
227 |
@torch.no_grad()
|
228 |
def __call__(
|
229 |
self,
|
230 |
-
prompt
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
colorize
|
237 |
-
**kwargs,
|
238 |
):
|
239 |
# Implementation similar to Zero123Pipeline
|
240 |
# Reference code from: https://github.com/zero123/zero123-diffusers
|
@@ -251,15 +244,18 @@ class TriplaneTurboTextTo3DPipeline(Pipeline):
|
|
251 |
# Get the device from the first available module
|
252 |
|
253 |
# Generate latents if not provided
|
254 |
-
if
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
)
|
|
|
|
|
|
|
260 |
|
261 |
# Process text prompt through geometry module
|
262 |
-
text_embed, _ = self.encode_prompt(prompt,
|
263 |
|
264 |
# Run diffusion process
|
265 |
# Set up timesteps for sampling
|
@@ -282,7 +278,7 @@ class TriplaneTurboTextTo3DPipeline(Pipeline):
|
|
282 |
pred = self.geometry.denoise(
|
283 |
noisy_input=noisy_latent_input,
|
284 |
text_embed=text_embed,
|
285 |
-
timestep=t.to(
|
286 |
)
|
287 |
|
288 |
# Update latents
|
@@ -311,20 +307,19 @@ class TriplaneTurboTextTo3DPipeline(Pipeline):
|
|
311 |
activation=self.material,
|
312 |
)
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
return mesh_list
|
323 |
|
324 |
def _set_timesteps(
|
325 |
self,
|
326 |
scheduler,
|
327 |
-
num_steps
|
328 |
):
|
329 |
"""Set up timesteps for sampling.
|
330 |
|
|
|
4 |
from tqdm import tqdm
|
5 |
|
6 |
import torch
|
|
|
7 |
from dataclasses import dataclass, field
|
8 |
from diffusers import StableDiffusionPipeline
|
9 |
|
|
|
20 |
# Basic pipeline settings
|
21 |
base_model_name_or_path: str = "stabilityai/stable-diffusion-2-1-base"
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Training/sampling settings
|
25 |
num_steps_sampling: int = 4
|
|
|
66 |
color_activation: str = "sigmoid-mipnerf"
|
67 |
|
68 |
@classmethod
|
69 |
+
def from_pretrained(cls, pretrained_path):
|
70 |
"""Load config from pretrained path"""
|
71 |
config_path = os.path.join(pretrained_path, "config.json")
|
72 |
if os.path.exists(config_path):
|
|
|
85 |
|
86 |
def __init__(
|
87 |
self,
|
88 |
+
geometry,
|
89 |
+
material,
|
90 |
+
base_pipeline,
|
91 |
+
sample_scheduler,
|
92 |
+
isosurface_helper,
|
93 |
**kwargs,
|
94 |
):
|
95 |
super().__init__()
|
|
|
110 |
@classmethod
|
111 |
def from_pretrained(
|
112 |
cls,
|
113 |
+
pretrained_model_name_or_path,
|
114 |
**kwargs,
|
115 |
):
|
116 |
"""
|
|
|
191 |
|
192 |
def encode_prompt(
|
193 |
self,
|
194 |
+
prompt,
|
195 |
+
device,
|
196 |
+
num_results_per_prompt = 1,
|
197 |
+
):
|
198 |
"""
|
199 |
Encodes the prompt into text encoder hidden states.
|
200 |
|
|
|
221 |
@torch.no_grad()
|
222 |
def __call__(
|
223 |
self,
|
224 |
+
prompt,
|
225 |
+
num_results_per_prompt=1,
|
226 |
+
generator=None,
|
227 |
+
device=None,
|
228 |
+
return_dict=True,
|
229 |
+
num_inference_steps=4,
|
230 |
+
colorize = True,
|
|
|
231 |
):
|
232 |
# Implementation similar to Zero123Pipeline
|
233 |
# Reference code from: https://github.com/zero123/zero123-diffusers
|
|
|
244 |
# Get the device from the first available module
|
245 |
|
246 |
# Generate latents if not provided
|
247 |
+
if device is None:
|
248 |
+
device = self.device
|
249 |
+
if generator is None:
|
250 |
+
generator = torch.Generator(device=device)
|
251 |
+
latents = torch.randn(
|
252 |
+
(batch_size * 6, 4, 32, 32), # hard-coded for now
|
253 |
+
generator=generator,
|
254 |
+
device=device,
|
255 |
+
)
|
256 |
|
257 |
# Process text prompt through geometry module
|
258 |
+
text_embed, _ = self.encode_prompt(prompt, device, num_results_per_prompt)
|
259 |
|
260 |
# Run diffusion process
|
261 |
# Set up timesteps for sampling
|
|
|
278 |
pred = self.geometry.denoise(
|
279 |
noisy_input=noisy_latent_input,
|
280 |
text_embed=text_embed,
|
281 |
+
timestep=t.to(device),
|
282 |
)
|
283 |
|
284 |
# Update latents
|
|
|
307 |
activation=self.material,
|
308 |
)
|
309 |
|
310 |
+
if return_dict:
|
311 |
+
return {
|
312 |
+
"space_cache": space_cache,
|
313 |
+
"latents": latents,
|
314 |
+
"mesh": mesh_list,
|
315 |
+
}
|
316 |
+
else:
|
317 |
+
return mesh_list
|
|
|
318 |
|
319 |
def _set_timesteps(
|
320 |
self,
|
321 |
scheduler,
|
322 |
+
num_steps,
|
323 |
):
|
324 |
"""Set up timesteps for sampling.
|
325 |
|
triplaneturbo_executable/utils/general_utils.py
CHANGED
@@ -2,17 +2,28 @@ import torch
|
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
from torch import Tensor
|
5 |
-
|
6 |
-
from
|
7 |
-
|
8 |
|
9 |
-
def config_to_primitive(config
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def scale_tensor(
|
13 |
-
dat
|
14 |
-
inp_scale
|
15 |
-
tgt_scale
|
16 |
):
|
17 |
if inp_scale is None:
|
18 |
inp_scale = (0, 1)
|
@@ -25,8 +36,8 @@ def scale_tensor(
|
|
25 |
return dat
|
26 |
|
27 |
def contract_to_unisphere_custom(
|
28 |
-
x
|
29 |
-
)
|
30 |
if unbounded:
|
31 |
x = scale_tensor(x, bbox, (-1, 1))
|
32 |
x = x * 2 - 1 # aabb is at [-1, 1]
|
@@ -81,7 +92,7 @@ def project_onto_planes(planes, coordinates):
|
|
81 |
projections = torch.bmm(coordinates, inv_planes)
|
82 |
return projections[..., :2]
|
83 |
|
84 |
-
def sample_from_planes(plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=2, interpolate_feat
|
85 |
assert padding_mode == 'zeros'
|
86 |
N, n_planes, C, H, W = plane_features.shape
|
87 |
_, M, _ = coordinates.shape
|
@@ -101,4 +112,10 @@ def sample_from_planes(plane_features, coordinates, mode='bilinear', padding_mod
|
|
101 |
output_features = output_features.permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
|
102 |
output_features = output_features.permute(0, 2, 1, 3).reshape(N, M, n_planes*C)
|
103 |
|
104 |
-
return output_features.contiguous()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
from torch import Tensor
|
5 |
+
import numpy as np
|
6 |
+
from dataclasses import asdict, is_dataclass
|
7 |
+
import gc
|
8 |
|
9 |
+
def config_to_primitive(config):
|
10 |
+
"""Convert a dataclass config to a dictionary recursively."""
|
11 |
+
if is_dataclass(config):
|
12 |
+
config_dict = asdict(config)
|
13 |
+
return {k: config_to_primitive(v) for k, v in config_dict.items()}
|
14 |
+
elif isinstance(config, dict):
|
15 |
+
return {k: config_to_primitive(v) for k, v in config.items()}
|
16 |
+
elif isinstance(config, list):
|
17 |
+
return [config_to_primitive(v) for v in config]
|
18 |
+
elif isinstance(config, tuple):
|
19 |
+
return tuple(config_to_primitive(v) for v in config)
|
20 |
+
else:
|
21 |
+
return config
|
22 |
|
23 |
def scale_tensor(
|
24 |
+
dat,
|
25 |
+
inp_scale,
|
26 |
+
tgt_scale
|
27 |
):
|
28 |
if inp_scale is None:
|
29 |
inp_scale = (0, 1)
|
|
|
36 |
return dat
|
37 |
|
38 |
def contract_to_unisphere_custom(
|
39 |
+
x, bbox, unbounded = False
|
40 |
+
):
|
41 |
if unbounded:
|
42 |
x = scale_tensor(x, bbox, (-1, 1))
|
43 |
x = x * 2 - 1 # aabb is at [-1, 1]
|
|
|
92 |
projections = torch.bmm(coordinates, inv_planes)
|
93 |
return projections[..., :2]
|
94 |
|
95 |
+
def sample_from_planes(plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=2, interpolate_feat = None):
|
96 |
assert padding_mode == 'zeros'
|
97 |
N, n_planes, C, H, W = plane_features.shape
|
98 |
_, M, _ = coordinates.shape
|
|
|
112 |
output_features = output_features.permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
|
113 |
output_features = output_features.permute(0, 2, 1, 3).reshape(N, M, n_planes*C)
|
114 |
|
115 |
+
return output_features.contiguous()
|
116 |
+
|
117 |
+
def cleanup():
|
118 |
+
"""Cleanup torch memory."""
|
119 |
+
gc.collect()
|
120 |
+
torch.cuda.empty_cache()
|
121 |
+
torch.cuda.ipc_collect()
|
triplaneturbo_executable/utils/mesh.py
CHANGED
@@ -1,77 +1,54 @@
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from typing import Any, Dict, Optional, Union
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from jaxtyping import Float, Integer
|
11 |
-
from torch import Tensor
|
12 |
|
13 |
def dot(x, y):
|
14 |
return torch.sum(x * y, -1, keepdim=True)
|
15 |
|
16 |
class Mesh:
|
17 |
def __init__(
|
18 |
-
self, v_pos
|
19 |
-
)
|
20 |
-
self.v_pos
|
21 |
-
self.t_pos_idx
|
22 |
-
self.
|
23 |
-
self.
|
24 |
-
self.
|
25 |
-
self.
|
26 |
-
self.
|
27 |
-
self.
|
28 |
-
self.
|
29 |
-
|
30 |
-
self.add_extra(k, v)
|
31 |
|
32 |
def add_extra(self, k, v) -> None:
|
33 |
self.extras[k] = v
|
34 |
|
35 |
-
def remove_outlier(self,
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
-
|
47 |
-
|
48 |
-
components = mesh.split(only_watertight=False)
|
49 |
-
|
50 |
-
|
51 |
-
n_faces_threshold: int
|
52 |
-
if isinstance(outlier_n_faces_threshold, float):
|
53 |
-
# set the threshold to the number of faces in the largest component multiplied by outlier_n_faces_threshold
|
54 |
-
n_faces_threshold = int(
|
55 |
-
max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold
|
56 |
-
)
|
57 |
-
else:
|
58 |
-
# set the threshold directly to outlier_n_faces_threshold
|
59 |
-
n_faces_threshold = outlier_n_faces_threshold
|
60 |
-
|
61 |
-
# remove the components with less than n_face_threshold faces
|
62 |
-
components = [c for c in components if c.faces.shape[0] >= n_faces_threshold]
|
63 |
-
|
64 |
-
# merge the components
|
65 |
-
mesh = trimesh.util.concatenate(components)
|
66 |
-
|
67 |
-
# convert back to our mesh format
|
68 |
-
v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos)
|
69 |
-
t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx)
|
70 |
-
|
71 |
-
clean_mesh = Mesh(v_pos, t_pos_idx)
|
72 |
-
# keep the extras unchanged
|
73 |
-
|
74 |
-
return clean_mesh
|
75 |
|
76 |
@property
|
77 |
def requires_grad(self):
|
@@ -245,8 +222,8 @@ class Mesh:
|
|
245 |
edges = torch.unique(edges, dim=0)
|
246 |
return edges
|
247 |
|
248 |
-
def normal_consistency(self)
|
249 |
-
edge_nrm
|
250 |
nc = (
|
251 |
1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1)
|
252 |
).mean()
|
@@ -279,10 +256,45 @@ class Mesh:
|
|
279 |
# correct diagonal
|
280 |
return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce()
|
281 |
|
282 |
-
def laplacian(self)
|
283 |
with torch.no_grad():
|
284 |
L = self._laplacian_uniform()
|
285 |
loss = L.mm(self.v_pos)
|
286 |
loss = loss.norm(dim=1)
|
287 |
loss = loss.mean()
|
288 |
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import torch.nn.functional as F
|
4 |
+
import trimesh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def dot(x, y):
|
7 |
return torch.sum(x * y, -1, keepdim=True)
|
8 |
|
9 |
class Mesh:
|
10 |
def __init__(
|
11 |
+
self, v_pos, t_pos_idx, material=None
|
12 |
+
):
|
13 |
+
self.v_pos = v_pos
|
14 |
+
self.t_pos_idx = t_pos_idx
|
15 |
+
self.material = material
|
16 |
+
self._v_nrm = None
|
17 |
+
self._v_tng = None
|
18 |
+
self._v_tex = None
|
19 |
+
self._t_tex_idx = None
|
20 |
+
self._v_rgb = None
|
21 |
+
self._edges = None
|
22 |
+
self.extras = {}
|
|
|
23 |
|
24 |
def add_extra(self, k, v) -> None:
|
25 |
self.extras[k] = v
|
26 |
|
27 |
+
def remove_outlier(self, n_face_threshold=5):
|
28 |
+
"""Remove outlier components with fewer faces than threshold."""
|
29 |
+
# Convert to trimesh
|
30 |
+
trimesh_mesh = self.as_trimesh()
|
31 |
+
|
32 |
+
# Split into connected components
|
33 |
+
components = trimesh_mesh.split(only_watertight=False)
|
34 |
+
|
35 |
+
# Filter components with few faces
|
36 |
+
valid_components = [c for c in components if len(c.faces) > n_face_threshold]
|
37 |
+
|
38 |
+
if len(valid_components) == 0:
|
39 |
+
# If no valid components, return the original mesh
|
40 |
+
return self
|
41 |
+
|
42 |
+
# Combine valid components
|
43 |
+
combined = trimesh.util.concatenate(valid_components)
|
44 |
+
|
45 |
+
# Convert back to our Mesh format
|
46 |
+
new_mesh = Mesh(
|
47 |
+
torch.tensor(combined.vertices, dtype=self.v_pos.dtype, device=self.v_pos.device),
|
48 |
+
torch.tensor(combined.faces, dtype=self.t_pos_idx.dtype, device=self.t_pos_idx.device)
|
49 |
)
|
50 |
+
|
51 |
+
return new_mesh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
@property
|
54 |
def requires_grad(self):
|
|
|
222 |
edges = torch.unique(edges, dim=0)
|
223 |
return edges
|
224 |
|
225 |
+
def normal_consistency(self):
|
226 |
+
edge_nrm = self.v_nrm[self.edges]
|
227 |
nc = (
|
228 |
1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1)
|
229 |
).mean()
|
|
|
256 |
# correct diagonal
|
257 |
return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce()
|
258 |
|
259 |
+
def laplacian(self):
|
260 |
with torch.no_grad():
|
261 |
L = self._laplacian_uniform()
|
262 |
loss = L.mm(self.v_pos)
|
263 |
loss = loss.norm(dim=1)
|
264 |
loss = loss.mean()
|
265 |
return loss
|
266 |
+
|
267 |
+
def to(self, device):
|
268 |
+
v_pos = self.v_pos.to(device)
|
269 |
+
t_pos_idx = self.t_pos_idx.to(device)
|
270 |
+
return Mesh(v_pos, t_pos_idx)
|
271 |
+
|
272 |
+
def as_trimesh(self):
|
273 |
+
vertices = self.v_pos.detach().cpu().numpy()
|
274 |
+
faces = self.t_pos_idx.detach().cpu().numpy()
|
275 |
+
|
276 |
+
mesh = trimesh.Trimesh(
|
277 |
+
vertices=vertices,
|
278 |
+
faces=faces,
|
279 |
+
process=False
|
280 |
+
)
|
281 |
+
|
282 |
+
# Add texture if available
|
283 |
+
if hasattr(self, 'albedo_map') and self.albedo_map is not None:
|
284 |
+
# Create texture visuals
|
285 |
+
uv = self.v_tex.detach().cpu().numpy()
|
286 |
+
|
287 |
+
# Create texture visuals
|
288 |
+
visual = trimesh.visual.texture.TextureVisuals(
|
289 |
+
uv=uv,
|
290 |
+
material=trimesh.visual.material.SimpleMaterial()
|
291 |
+
)
|
292 |
+
mesh.visual = visual
|
293 |
+
|
294 |
+
return mesh
|
295 |
+
|
296 |
+
def scale_tensor(x, input_range, target_range):
|
297 |
+
"""Scale tensor from input_range to target_range."""
|
298 |
+
x_unit = (x - input_range[0]) / (input_range[1] - input_range[0])
|
299 |
+
x_scaled = x_unit * (target_range[1] - target_range[0]) + target_range[0]
|
300 |
+
return x_scaled
|
triplaneturbo_executable/utils/mesh_exporter.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
from typing import Callable, Dict, List, Optional, Tuple, Any
|
2 |
-
from jaxtyping import Float
|
3 |
-
from torch import Tensor
|
4 |
from dataclasses import dataclass
|
5 |
|
6 |
import torch
|
@@ -16,36 +13,35 @@ from ..utils.general_utils import scale_tensor
|
|
16 |
class ExporterOutput:
|
17 |
save_name: str
|
18 |
save_type: str
|
19 |
-
params:
|
20 |
|
21 |
|
22 |
class IsosurfaceHelper(nn.Module):
|
23 |
-
points_range
|
24 |
|
25 |
@property
|
26 |
-
def grid_vertices(self)
|
27 |
raise NotImplementedError
|
28 |
|
29 |
class DiffMarchingCubeHelper(IsosurfaceHelper):
|
30 |
def __init__(
|
31 |
self,
|
32 |
-
resolution
|
33 |
-
point_range
|
34 |
-
)
|
35 |
super().__init__()
|
36 |
self.resolution = resolution
|
37 |
self.points_range = point_range
|
38 |
|
39 |
from diso import DiffMC
|
40 |
-
self.mc_func
|
41 |
-
self._grid_vertices
|
42 |
-
self._dummy: Float[Tensor, "..."]
|
43 |
self.register_buffer(
|
44 |
"_dummy", torch.zeros(0, dtype=torch.float32), persistent=False
|
45 |
)
|
46 |
|
47 |
@property
|
48 |
-
def grid_vertices(self)
|
49 |
if self._grid_vertices is None:
|
50 |
# keep the vertices on CPU so that we can support very large resolution
|
51 |
x, y, z = (
|
@@ -62,10 +58,10 @@ class DiffMarchingCubeHelper(IsosurfaceHelper):
|
|
62 |
|
63 |
def forward(
|
64 |
self,
|
65 |
-
level
|
66 |
-
deformation
|
67 |
isovalue=0.0,
|
68 |
-
)
|
69 |
level = level.view(self.resolution, self.resolution, self.resolution)
|
70 |
if deformation is not None:
|
71 |
deformation = deformation.view(self.resolution, self.resolution, self.resolution, 3)
|
@@ -76,17 +72,17 @@ class DiffMarchingCubeHelper(IsosurfaceHelper):
|
|
76 |
|
77 |
|
78 |
def isosurface(
|
79 |
-
space_cache
|
80 |
-
forward_field
|
81 |
-
isosurface_helper
|
82 |
-
)
|
83 |
|
84 |
# the isosurface is dependent on the space cache
|
85 |
# randomly detach isosurface method if it is differentiable
|
86 |
# get the batchsize
|
87 |
if torch.is_tensor(space_cache): #space cache
|
88 |
batch_size = space_cache.shape[0]
|
89 |
-
elif isinstance(space_cache,
|
90 |
# Dict[str, List[Float[Tensor, "B ..."]]]
|
91 |
for key in space_cache.keys():
|
92 |
batch_size = space_cache[key][0].shape[0]
|
@@ -141,11 +137,11 @@ def isosurface(
|
|
141 |
return mesh_list
|
142 |
|
143 |
def colorize_mesh(
|
144 |
-
space_cache
|
145 |
-
export_fn
|
146 |
-
mesh_list
|
147 |
-
activation
|
148 |
-
)
|
149 |
"""Colorize the mesh using the geometry's export function and space cache.
|
150 |
|
151 |
Args:
|
@@ -199,10 +195,10 @@ class MeshExporter(SaverMixin):
|
|
199 |
return x
|
200 |
|
201 |
def export_obj(
|
202 |
-
mesh
|
203 |
-
save_path
|
204 |
-
save_normal
|
205 |
-
)
|
206 |
"""
|
207 |
Export mesh data to OBJ file format.
|
208 |
|
|
|
|
|
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
|
3 |
import torch
|
|
|
13 |
class ExporterOutput:
|
14 |
save_name: str
|
15 |
save_type: str
|
16 |
+
params: dict
|
17 |
|
18 |
|
19 |
class IsosurfaceHelper(nn.Module):
|
20 |
+
points_range = (0, 1)
|
21 |
|
22 |
@property
|
23 |
+
def grid_vertices(self):
|
24 |
raise NotImplementedError
|
25 |
|
26 |
class DiffMarchingCubeHelper(IsosurfaceHelper):
|
27 |
def __init__(
|
28 |
self,
|
29 |
+
resolution,
|
30 |
+
point_range = (0, 1)
|
31 |
+
):
|
32 |
super().__init__()
|
33 |
self.resolution = resolution
|
34 |
self.points_range = point_range
|
35 |
|
36 |
from diso import DiffMC
|
37 |
+
self.mc_func = DiffMC(dtype=torch.float32)
|
38 |
+
self._grid_vertices = None
|
|
|
39 |
self.register_buffer(
|
40 |
"_dummy", torch.zeros(0, dtype=torch.float32), persistent=False
|
41 |
)
|
42 |
|
43 |
@property
|
44 |
+
def grid_vertices(self):
|
45 |
if self._grid_vertices is None:
|
46 |
# keep the vertices on CPU so that we can support very large resolution
|
47 |
x, y, z = (
|
|
|
58 |
|
59 |
def forward(
|
60 |
self,
|
61 |
+
level,
|
62 |
+
deformation = None,
|
63 |
isovalue=0.0,
|
64 |
+
):
|
65 |
level = level.view(self.resolution, self.resolution, self.resolution)
|
66 |
if deformation is not None:
|
67 |
deformation = deformation.view(self.resolution, self.resolution, self.resolution, 3)
|
|
|
72 |
|
73 |
|
74 |
def isosurface(
|
75 |
+
space_cache,
|
76 |
+
forward_field,
|
77 |
+
isosurface_helper,
|
78 |
+
):
|
79 |
|
80 |
# the isosurface is dependent on the space cache
|
81 |
# randomly detach isosurface method if it is differentiable
|
82 |
# get the batchsize
|
83 |
if torch.is_tensor(space_cache): #space cache
|
84 |
batch_size = space_cache.shape[0]
|
85 |
+
elif isinstance(space_cache, dict): #hyper net
|
86 |
# Dict[str, List[Float[Tensor, "B ..."]]]
|
87 |
for key in space_cache.keys():
|
88 |
batch_size = space_cache[key][0].shape[0]
|
|
|
137 |
return mesh_list
|
138 |
|
139 |
def colorize_mesh(
|
140 |
+
space_cache,
|
141 |
+
export_fn,
|
142 |
+
mesh_list,
|
143 |
+
activation,
|
144 |
+
):
|
145 |
"""Colorize the mesh using the geometry's export function and space cache.
|
146 |
|
147 |
Args:
|
|
|
195 |
return x
|
196 |
|
197 |
def export_obj(
|
198 |
+
mesh,
|
199 |
+
save_path,
|
200 |
+
save_normal = False,
|
201 |
+
):
|
202 |
"""
|
203 |
Export mesh data to OBJ file format.
|
204 |
|
triplaneturbo_executable/utils/saving.py
CHANGED
@@ -13,22 +13,15 @@ import wandb
|
|
13 |
from matplotlib import cm
|
14 |
from matplotlib.colors import LinearSegmentedColormap
|
15 |
from PIL import Image, ImageDraw
|
16 |
-
# from pytorch_lightning.loggers import WandbLogger
|
17 |
|
18 |
-
from ..utils.mesh import Mesh
|
19 |
-
|
20 |
-
from typing import Dict, List, Optional, Union, Any
|
21 |
-
from omegaconf import DictConfig
|
22 |
-
from jaxtyping import Float
|
23 |
-
from torch import Tensor
|
24 |
|
25 |
import threading
|
26 |
|
27 |
class SaverMixin:
|
28 |
-
_save_dir
|
29 |
-
# _wandb_logger
|
30 |
|
31 |
-
def set_save_dir(self, save_dir
|
32 |
self._save_dir = save_dir
|
33 |
|
34 |
def get_save_dir(self):
|
@@ -58,17 +51,6 @@ class SaverMixin:
|
|
58 |
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
59 |
return save_path
|
60 |
|
61 |
-
# def create_loggers(self, cfg_loggers: DictConfig) -> None:
|
62 |
-
# if "wandb" in cfg_loggers.keys() and cfg_loggers.wandb.enable:
|
63 |
-
# self._wandb_logger = WandbLogger(
|
64 |
-
# project=cfg_loggers.wandb.project, name=cfg_loggers.wandb.name
|
65 |
-
# )
|
66 |
-
|
67 |
-
# def get_loggers(self) -> List:
|
68 |
-
# if self._wandb_logger:
|
69 |
-
# return [self._wandb_logger]
|
70 |
-
# else:
|
71 |
-
# return []
|
72 |
|
73 |
DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)}
|
74 |
DEFAULT_UV_KWARGS = {
|
@@ -119,8 +101,8 @@ class SaverMixin:
|
|
119 |
img,
|
120 |
data_format,
|
121 |
data_range,
|
122 |
-
name
|
123 |
-
step
|
124 |
):
|
125 |
img = self.get_rgb_image_(img, data_format, data_range)
|
126 |
cv2.imwrite(filename, img)
|
@@ -138,8 +120,8 @@ class SaverMixin:
|
|
138 |
img,
|
139 |
data_format=DEFAULT_RGB_KWARGS["data_format"],
|
140 |
data_range=DEFAULT_RGB_KWARGS["data_range"],
|
141 |
-
name
|
142 |
-
step
|
143 |
) -> str:
|
144 |
save_path = self.get_save_path(filename)
|
145 |
self._save_rgb_image(save_path, img, data_format, data_range, name, step)
|
@@ -231,8 +213,8 @@ class SaverMixin:
|
|
231 |
img,
|
232 |
data_range,
|
233 |
cmap,
|
234 |
-
name
|
235 |
-
step
|
236 |
):
|
237 |
img = self.get_grayscale_image_(img, data_range, cmap)
|
238 |
cv2.imwrite(filename, img)
|
@@ -250,8 +232,8 @@ class SaverMixin:
|
|
250 |
img,
|
251 |
data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"],
|
252 |
cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"],
|
253 |
-
name
|
254 |
-
step
|
255 |
) -> str:
|
256 |
save_path = self.get_save_path(filename)
|
257 |
self._save_grayscale_image(save_path, img, data_range, cmap, name, step)
|
@@ -308,9 +290,9 @@ class SaverMixin:
|
|
308 |
filename,
|
309 |
imgs,
|
310 |
align=DEFAULT_GRID_KWARGS["align"],
|
311 |
-
name
|
312 |
-
step
|
313 |
-
texts
|
314 |
):
|
315 |
save_path = self.get_save_path(filename)
|
316 |
img = self.get_image_grid_(imgs, align=align)
|
@@ -404,8 +386,8 @@ class SaverMixin:
|
|
404 |
# matcher,
|
405 |
# save_format="mp4",
|
406 |
# fps=30,
|
407 |
-
# name
|
408 |
-
# step
|
409 |
# ) -> str:
|
410 |
# assert save_format in ["gif", "mp4"]
|
411 |
# if not filename.endswith(save_format):
|
@@ -442,9 +424,9 @@ class SaverMixin:
|
|
442 |
matcher,
|
443 |
save_format="mp4",
|
444 |
fps=30,
|
445 |
-
name
|
446 |
-
step
|
447 |
-
multithreaded
|
448 |
) -> str:
|
449 |
assert save_format in ["gif", "mp4"]
|
450 |
if not filename.endswith(save_format):
|
@@ -494,20 +476,19 @@ class SaverMixin:
|
|
494 |
|
495 |
def save_obj(
|
496 |
self,
|
497 |
-
filename
|
498 |
-
mesh
|
499 |
-
save_mat
|
500 |
-
save_normal
|
501 |
-
save_uv
|
502 |
-
save_vertex_color
|
503 |
-
map_Kd
|
504 |
-
map_Ks
|
505 |
-
map_Bump
|
506 |
-
map_Pm
|
507 |
-
map_Pr
|
508 |
-
map_format
|
509 |
-
)
|
510 |
-
|
511 |
if not filename.endswith(".obj"):
|
512 |
filename += ".obj"
|
513 |
save_path = self.get_save_path(filename)
|
@@ -658,8 +639,8 @@ class SaverMixin:
|
|
658 |
map_Pm=None,
|
659 |
map_Pr=None,
|
660 |
map_format="jpg",
|
661 |
-
step
|
662 |
-
)
|
663 |
mtl_save_path = self.get_save_path(filename)
|
664 |
save_paths = [mtl_save_path]
|
665 |
mtl_str = f"newmtl {matname}\n"
|
|
|
13 |
from matplotlib import cm
|
14 |
from matplotlib.colors import LinearSegmentedColormap
|
15 |
from PIL import Image, ImageDraw
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
import threading
|
19 |
|
20 |
class SaverMixin:
|
21 |
+
_save_dir = None
|
22 |
+
# _wandb_logger = None
|
23 |
|
24 |
+
def set_save_dir(self, save_dir):
|
25 |
self._save_dir = save_dir
|
26 |
|
27 |
def get_save_dir(self):
|
|
|
51 |
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
52 |
return save_path
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)}
|
56 |
DEFAULT_UV_KWARGS = {
|
|
|
101 |
img,
|
102 |
data_format,
|
103 |
data_range,
|
104 |
+
name=None,
|
105 |
+
step=None,
|
106 |
):
|
107 |
img = self.get_rgb_image_(img, data_format, data_range)
|
108 |
cv2.imwrite(filename, img)
|
|
|
120 |
img,
|
121 |
data_format=DEFAULT_RGB_KWARGS["data_format"],
|
122 |
data_range=DEFAULT_RGB_KWARGS["data_range"],
|
123 |
+
name=None,
|
124 |
+
step=None,
|
125 |
) -> str:
|
126 |
save_path = self.get_save_path(filename)
|
127 |
self._save_rgb_image(save_path, img, data_format, data_range, name, step)
|
|
|
213 |
img,
|
214 |
data_range,
|
215 |
cmap,
|
216 |
+
name=None,
|
217 |
+
step=None,
|
218 |
):
|
219 |
img = self.get_grayscale_image_(img, data_range, cmap)
|
220 |
cv2.imwrite(filename, img)
|
|
|
232 |
img,
|
233 |
data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"],
|
234 |
cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"],
|
235 |
+
name=None,
|
236 |
+
step=None,
|
237 |
) -> str:
|
238 |
save_path = self.get_save_path(filename)
|
239 |
self._save_grayscale_image(save_path, img, data_range, cmap, name, step)
|
|
|
290 |
filename,
|
291 |
imgs,
|
292 |
align=DEFAULT_GRID_KWARGS["align"],
|
293 |
+
name=None,
|
294 |
+
step=None,
|
295 |
+
texts=None,
|
296 |
):
|
297 |
save_path = self.get_save_path(filename)
|
298 |
img = self.get_image_grid_(imgs, align=align)
|
|
|
386 |
# matcher,
|
387 |
# save_format="mp4",
|
388 |
# fps=30,
|
389 |
+
# name=None,
|
390 |
+
# step=None,
|
391 |
# ) -> str:
|
392 |
# assert save_format in ["gif", "mp4"]
|
393 |
# if not filename.endswith(save_format):
|
|
|
424 |
matcher,
|
425 |
save_format="mp4",
|
426 |
fps=30,
|
427 |
+
name=None,
|
428 |
+
step=None,
|
429 |
+
multithreaded=False
|
430 |
) -> str:
|
431 |
assert save_format in ["gif", "mp4"]
|
432 |
if not filename.endswith(save_format):
|
|
|
476 |
|
477 |
def save_obj(
|
478 |
self,
|
479 |
+
filename,
|
480 |
+
mesh,
|
481 |
+
save_mat=False,
|
482 |
+
save_normal=False,
|
483 |
+
save_uv=False,
|
484 |
+
save_vertex_color=False,
|
485 |
+
map_Kd=None,
|
486 |
+
map_Ks=None,
|
487 |
+
map_Bump=None,
|
488 |
+
map_Pm=None,
|
489 |
+
map_Pr=None,
|
490 |
+
map_format="jpg",
|
491 |
+
):
|
|
|
492 |
if not filename.endswith(".obj"):
|
493 |
filename += ".obj"
|
494 |
save_path = self.get_save_path(filename)
|
|
|
639 |
map_Pm=None,
|
640 |
map_Pr=None,
|
641 |
map_format="jpg",
|
642 |
+
step=None,
|
643 |
+
):
|
644 |
mtl_save_path = self.get_save_path(filename)
|
645 |
save_paths = [mtl_save_path]
|
646 |
mtl_str = f"newmtl {matname}\n"
|