Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -68,12 +68,11 @@ def pred_maps(images):
|
|
68 |
with torch.no_grad():
|
69 |
scaled_preds_tensor = model(images_proc.to(device))[-1]
|
70 |
preds = []
|
71 |
-
print('scaled_preds_tensor.sum():', scaled_preds_tensor.sum())
|
72 |
-
print('type(scaled_preds_tensor):', type(scaled_preds_tensor))
|
73 |
for image_shape, pred_tensor, save_path in zip(image_shapes, scaled_preds_tensor, save_paths):
|
74 |
if device == 'cuda':
|
75 |
pred_tensor = pred_tensor.cpu()
|
76 |
pred_tensor = torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()
|
|
|
77 |
cv2.imwrite(save_path, pred_tensor)
|
78 |
|
79 |
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
|
|
|
68 |
with torch.no_grad():
|
69 |
scaled_preds_tensor = model(images_proc.to(device))[-1]
|
70 |
preds = []
|
|
|
|
|
71 |
for image_shape, pred_tensor, save_path in zip(image_shapes, scaled_preds_tensor, save_paths):
|
72 |
if device == 'cuda':
|
73 |
pred_tensor = pred_tensor.cpu()
|
74 |
pred_tensor = torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()
|
75 |
+
pred_tensor = cv2.cvtColor((pred_tensor*255).astype(np.uint8)
|
76 |
cv2.imwrite(save_path, pred_tensor)
|
77 |
|
78 |
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
|