# This code is built from the Stable Diffusion repository: https://github.com/CompVis/stable-diffusion, and # Paint-by-Example repo https://github.com/Fantasy-Studio/Paint-by-Example # Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors. # CreativeML Open RAIL-M # # ========================================================================================== # # Adobe’s modifications are Copyright 2024 Adobe Research. All rights reserved. # Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit # LICENSE.md. # # ========================================================================================== from inspect import isfunction import math import numpy as np import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat import glob from ldm.modules.diffusionmodules.util import checkpoint def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x+h_ class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., only_crossref=False): super().__init__() inner_dim = dim_head * heads # forcing attention to only attend on vectors of same size # breaking the image2text attention context_dim = default(context_dim, query_dim) # print('creating cross attention. Query dim', query_dim, ' context dim', context_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.only_crossref = only_crossref if only_crossref: self.merge_attentions = zero_module(nn.Conv2d(self.heads * 2, self.heads, kernel_size=1, stride=1, padding=0)) else: self.merge_attentions = zero_module(nn.Conv2d(self.heads * 3, self.heads, kernel_size=1, stride=1, padding=0)) self.merge_attentions_missing = zero_module(nn.Conv2d(self.heads * 2, self.heads, kernel_size=1, stride=1, padding=0)) def forward(self, x, context=None, mask=None, passed_qkv=None, masks=None, corresp=None, missing_region=None): is_self_attention = context is None # if masks is not None: # print(is_self_attention, masks.keys()) h = self.heads # if passed_qkv is not None: # assert context is None # _,_,_,_, x_features = passed_qkv # assert x_features is not None # # print('x shape', x.shape, 'x features', x_features.shape) # # breakpoint() # x = torch.concat([x, x_features], dim=1) q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if exists(mask): assert False mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v) inter_out = rearrange(out, '(b h) n d -> b h n d', h=h) combined_attention = inter_out out = rearrange(combined_attention, 'b h n d -> b n (h d)', h=h) final_out = self.to_out(out) if is_self_attention: return final_out, q, k, v, inter_out #TODO add attn out else: return final_out class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): super().__init__() self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none self.attn3 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint # TODO add attn in def forward(self, x, context=None, passed_qkv=None, masks=None, corresp=None): if passed_qkv is None: return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) else: q, k, v, attn, x_features = passed_qkv d = int(np.sqrt(q.shape[1])) current_mask = masks[d] if corresp: current_corresp, missing_region = corresp[d] current_corresp = current_corresp.float() missing_region = missing_region.float() else: raise ValueError('cannot have empty corresp') current_corresp = None missing_region = current_mask.float() # breakpoint() stuff = [q, k, v, attn, x_features, current_mask, current_corresp, missing_region] for element in stuff: assert element is not None return checkpoint(self._forward, (x, context, q, k, v, attn, x_features, current_mask, current_corresp, missing_region), self.parameters(), self.checkpoint) # TODO add attn in def _forward(self, x, context=None, q=None, k=None, v=None, attn=None, passed_x=None, masks=None, corresp=None, missing_region=None): if q is not None: passed_qkv = (q, k, v, attn, passed_x) else: passed_qkv = None x_features = self.norm1(x) attended_x, q, k, v, attn = self.attn1(x_features, passed_qkv=passed_qkv, masks=masks, corresp=corresp, missing_region=missing_region) x = attended_x + x # killing CLIP features if passed_x is not None: normed_x = self.norm2(x) attn_out = self.attn3(normed_x, context=passed_x) x = attn_out + x # then use y + x # print('y shape', y.shape, ' x shape', x.shape) x = self.ff(self.norm3(x)) + x return x, q, k, v, attn, x_features class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) # print('creating spatial transformer') # print('in channels', in_channels, 'inner dim', inner_dim) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) # TODO add attn in and corresp def forward(self, x, context=None, passed_qkv=None, masks=None, corresp=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape # print('spatial transformer x shape given', x.shape) # if context is not None: # print('also context was provided with shape ', context.shape) x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c') qkvs = [] for block in self.transformer_blocks: x, q, k, v, attn, x_features = block(x, context=context, passed_qkv=passed_qkv, masks=masks, corresp=corresp) qkv = (q,k,v,attn, x_features) qkvs.append(qkv) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) x = self.proj_out(x) return x + x_in, qkvs