|
|
|
import argparse, os, sys, glob |
|
|
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from tqdm import tqdm, trange |
|
from imwatermark import WatermarkEncoder |
|
from itertools import islice |
|
from einops import rearrange |
|
from torchvision.utils import make_grid |
|
import time |
|
from pytorch_lightning import seed_everything |
|
from torch import autocast |
|
from contextlib import contextmanager, nullcontext |
|
import torchvision |
|
from ldm.util import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from transformers import AutoFeatureExtractor |
|
import clip |
|
from torchvision.transforms import Resize |
|
import json |
|
wm = "Paint-by-Example" |
|
wm_encoder = WatermarkEncoder() |
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) |
|
safety_model_id = "CompVis/stable-diffusion-safety-checker" |
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) |
|
|
|
def chunk(it, size): |
|
it = iter(it) |
|
return iter(lambda: tuple(islice(it, size)), ()) |
|
|
|
def get_tensor_clip(normalize=True, toTensor=True): |
|
transform_list = [] |
|
if toTensor: |
|
transform_list += [torchvision.transforms.ToTensor()] |
|
|
|
if normalize: |
|
transform_list += [torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711))] |
|
return torchvision.transforms.Compose(transform_list) |
|
|
|
def numpy_to_pil(images): |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
if "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
sd = pl_sd["state_dict"] |
|
model = instantiate_from_config(config.model) |
|
|
|
m, u = model.load_state_dict(sd, strict=False) |
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
model.cuda() |
|
model.eval() |
|
return model |
|
|
|
|
|
def put_watermark(img, wm_encoder=None): |
|
if wm_encoder is not None: |
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
img = wm_encoder.encode(img, 'dwtDct') |
|
img = Image.fromarray(img[:, :, ::-1]) |
|
return img |
|
|
|
|
|
def load_replacement(x): |
|
try: |
|
hwc = x.shape |
|
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) |
|
y = (np.array(y)/255.0).astype(x.dtype) |
|
assert y.shape == x.shape |
|
return y |
|
except Exception: |
|
return x |
|
|
|
|
|
def check_safety(x_image): |
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") |
|
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) |
|
assert x_checked_image.shape[0] == len(has_nsfw_concept) |
|
for i in range(len(has_nsfw_concept)): |
|
if has_nsfw_concept[i]: |
|
x_checked_image[i] = load_replacement(x_checked_image[i]) |
|
return x_checked_image, has_nsfw_concept |
|
|
|
def get_tensor(normalize=True, toTensor=True): |
|
transform_list = [] |
|
if toTensor: |
|
transform_list += [torchvision.transforms.ToTensor()] |
|
|
|
if normalize: |
|
transform_list += [torchvision.transforms.Normalize((0.5, 0.5, 0.5), |
|
(0.5, 0.5, 0.5))] |
|
transform_list += [ |
|
torchvision.transforms.Resize(512), |
|
torchvision.transforms.CenterCrop(512) |
|
] |
|
return torchvision.transforms.Compose(transform_list) |
|
|
|
def get_tensor_clip(normalize=True, toTensor=True): |
|
transform_list = [] |
|
if toTensor: |
|
transform_list += [torchvision.transforms.ToTensor()] |
|
|
|
if normalize: |
|
transform_list += [torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711))] |
|
return torchvision.transforms.Compose(transform_list) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--outdir", |
|
type=str, |
|
nargs="?", |
|
help="dir to write results to", |
|
default="outputs/txt2img-samples" |
|
) |
|
parser.add_argument( |
|
"--skip_grid", |
|
action='store_true', |
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", |
|
) |
|
parser.add_argument( |
|
"--skip_save", |
|
action='store_true', |
|
help="do not save individual samples. For speed measurements.", |
|
) |
|
parser.add_argument( |
|
"--ddim_steps", |
|
type=int, |
|
default=50, |
|
help="number of ddim sampling steps", |
|
) |
|
parser.add_argument( |
|
"--plms", |
|
action='store_true', |
|
help="use plms sampling", |
|
) |
|
parser.add_argument( |
|
"--fixed_code", |
|
action='store_true', |
|
help="if enabled, uses the same starting code across samples ", |
|
) |
|
parser.add_argument( |
|
"--ddim_eta", |
|
type=float, |
|
default=0.0, |
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling", |
|
) |
|
parser.add_argument( |
|
"--n_iter", |
|
type=int, |
|
default=2, |
|
help="sample this often", |
|
) |
|
parser.add_argument( |
|
"--H", |
|
type=int, |
|
default=512, |
|
help="image height, in pixel space", |
|
) |
|
parser.add_argument( |
|
"--W", |
|
type=int, |
|
default=512, |
|
help="image width, in pixel space", |
|
) |
|
parser.add_argument( |
|
"--n_imgs", |
|
type=int, |
|
default=100, |
|
help="image width, in pixel space", |
|
) |
|
parser.add_argument( |
|
"--C", |
|
type=int, |
|
default=4, |
|
help="latent channels", |
|
) |
|
parser.add_argument( |
|
"--f", |
|
type=int, |
|
default=8, |
|
help="downsampling factor", |
|
) |
|
parser.add_argument( |
|
"--n_samples", |
|
type=int, |
|
default=1, |
|
help="how many samples to produce for each given reference image. A.k.a. batch size", |
|
) |
|
parser.add_argument( |
|
"--n_rows", |
|
type=int, |
|
default=0, |
|
help="rows in the grid (default: n_samples)", |
|
) |
|
parser.add_argument( |
|
"--scale", |
|
type=float, |
|
default=1, |
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", |
|
) |
|
parser.add_argument( |
|
"--config", |
|
type=str, |
|
default="", |
|
help="path to config which constructs model", |
|
) |
|
parser.add_argument( |
|
"--ckpt", |
|
type=str, |
|
default="", |
|
help="path to checkpoint of model", |
|
) |
|
parser.add_argument( |
|
"--seed", |
|
type=int, |
|
default=42, |
|
help="the seed (for reproducible sampling)", |
|
) |
|
parser.add_argument( |
|
"--precision", |
|
type=str, |
|
help="evaluate at this precision", |
|
choices=["full", "autocast"], |
|
default="autocast" |
|
) |
|
parser.add_argument( |
|
"--image_path", |
|
type=str, |
|
help="evaluate at this precision", |
|
default="" |
|
) |
|
parser.add_argument( |
|
"--mask_path", |
|
type=str, |
|
help="evaluate at this precision", |
|
default="" |
|
) |
|
parser.add_argument( |
|
"--reference_path", |
|
type=str, |
|
help="evaluate at this precision", |
|
default="" |
|
) |
|
opt = parser.parse_args() |
|
|
|
|
|
seed_everything(opt.seed) |
|
|
|
config = OmegaConf.load(f"{opt.config}") |
|
model = load_model_from_config(config, f"{opt.ckpt}") |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
|
|
if opt.plms: |
|
sampler = PLMSSampler(model) |
|
else: |
|
sampler = DDIMSampler(model) |
|
|
|
os.makedirs(opt.outdir, exist_ok=True) |
|
outpath = opt.outdir |
|
|
|
|
|
batch_size = opt.n_samples |
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size |
|
|
|
sample_path = os.path.join(outpath, "source") |
|
result_path = os.path.join(outpath, "results") |
|
grid_path=os.path.join(outpath, "grid") |
|
os.makedirs(sample_path, exist_ok=True) |
|
os.makedirs(result_path, exist_ok=True) |
|
os.makedirs(grid_path, exist_ok=True) |
|
|
|
|
|
start_code = None |
|
if opt.fixed_code: |
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) |
|
|
|
precision_scope = autocast if opt.precision=="autocast" else nullcontext |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
with precision_scope("cuda"): |
|
for i in range(1): |
|
with model.ema_scope(): |
|
filename=os.path.basename(opt.image_path) |
|
img_p = Image.open(opt.image_path).convert("RGB") |
|
image_tensor = get_tensor()(img_p) |
|
image_tensor = image_tensor.unsqueeze(0) |
|
ref_p = Image.open(opt.reference_path).convert("RGB") |
|
width, height = ref_p.size |
|
new_width = min(width, height) |
|
new_height = new_width |
|
|
|
left = (width - new_width)/2 |
|
top = (height - new_height)/2 |
|
right = (width + new_width)/2 |
|
bottom = (height + new_height)/2 |
|
|
|
|
|
ref_p = ref_p.crop((left, top, right, bottom)) |
|
ref_p = ref_p.resize((224,224)) |
|
ref_tensor=get_tensor_clip()(ref_p) |
|
ref_tensor = ref_tensor.unsqueeze(0) |
|
mask=Image.open(opt.mask_path).convert("L") |
|
mask = mask.crop((left, top, right, bottom)) |
|
mask = np.array(mask)[None,None] |
|
mask = mask.astype(np.float32)/255.0 |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask_tensor = torch.from_numpy(mask) |
|
inpaint_image = image_tensor |
|
|
|
|
|
print('inpaint image size', inpaint_image.shape) |
|
test_model_kwargs={} |
|
test_model_kwargs['inpaint_mask']=mask_tensor.to(device) |
|
test_model_kwargs['inpaint_image']=inpaint_image.to(device) |
|
ref_tensor=ref_tensor.to(device) |
|
uc = None |
|
if opt.scale != 1.0: |
|
uc = model.learnable_vector |
|
c = model.get_learned_conditioning(ref_tensor.to(torch.float16)) |
|
c = model.proj_out(c) |
|
inpaint_mask=test_model_kwargs['inpaint_mask'] |
|
z_inpaint = model.encode_first_stage(test_model_kwargs['inpaint_image']) |
|
z_inpaint = model.get_first_stage_encoding(z_inpaint).detach() |
|
test_model_kwargs['inpaint_image']=z_inpaint |
|
test_model_kwargs['inpaint_mask']=Resize([z_inpaint.shape[-2],z_inpaint.shape[-1]])(test_model_kwargs['inpaint_mask']) |
|
|
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, |
|
conditioning=c, |
|
batch_size=opt.n_samples, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=opt.scale, |
|
unconditional_conditioning=uc, |
|
eta=opt.ddim_eta, |
|
x_T=start_code, |
|
test_model_kwargs=test_model_kwargs) |
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) |
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
|
|
x_checked_image=x_samples_ddim |
|
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) |
|
|
|
def un_norm(x): |
|
return (x+1.0)/2.0 |
|
def un_norm_clip(x): |
|
x[0,:,:] = x[0,:,:] * 0.26862954 + 0.48145466 |
|
x[1,:,:] = x[1,:,:] * 0.26130258 + 0.4578275 |
|
x[2,:,:] = x[2,:,:] * 0.27577711 + 0.40821073 |
|
return x |
|
|
|
if not opt.skip_save: |
|
for i,x_sample in enumerate(x_checked_image_torch): |
|
|
|
|
|
all_img=[] |
|
all_img.append(un_norm(image_tensor[i]).cpu()) |
|
all_img.append(un_norm(inpaint_image[i]).cpu()) |
|
ref_img=ref_tensor |
|
ref_img=Resize([opt.H, opt.W])(ref_img) |
|
all_img.append(un_norm_clip(ref_img[i]).cpu()) |
|
all_img.append(x_sample) |
|
grid = torch.stack(all_img, 0) |
|
grid = make_grid(grid) |
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() |
|
img = Image.fromarray(grid.astype(np.uint8)) |
|
img = put_watermark(img, wm_encoder) |
|
img.save(os.path.join(grid_path, 'grid-'+filename[:-4]+'_'+str(opt.seed)+f'_{i}.png')) |
|
|
|
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
img = Image.fromarray(x_sample.astype(np.uint8)) |
|
img = put_watermark(img, wm_encoder) |
|
img.save(os.path.join(result_path, filename[:-4]+'_'+str(opt.seed)+f"_{i}.png")) |
|
|
|
mask_save=255.*rearrange(un_norm(inpaint_mask[i]).cpu(), 'c h w -> h w c').numpy() |
|
mask_save= cv2.cvtColor(mask_save,cv2.COLOR_GRAY2RGB) |
|
mask_save = Image.fromarray(mask_save.astype(np.uint8)) |
|
mask_save.save(os.path.join(sample_path, filename[:-4]+'_'+str(opt.seed)+f"_mask_{i}.png")) |
|
GT_img=255.*rearrange(all_img[0], 'c h w -> h w c').numpy() |
|
GT_img = Image.fromarray(GT_img.astype(np.uint8)) |
|
GT_img.save(os.path.join(sample_path, filename[:-4]+'_'+str(opt.seed)+f"_GT_{i}.png")) |
|
inpaint_img=255.*rearrange(all_img[1], 'c h w -> h w c').numpy() |
|
inpaint_img = Image.fromarray(inpaint_img.astype(np.uint8)) |
|
inpaint_img.save(os.path.join(sample_path, filename[:-4]+'_'+str(opt.seed)+f"_inpaint_{i}.png")) |
|
ref_img=255.*rearrange(all_img[2], 'c h w -> h w c').numpy() |
|
ref_img = Image.fromarray(ref_img.astype(np.uint8)) |
|
ref_img.save(os.path.join(sample_path, filename[:-4]+'_'+str(opt.seed)+f"_ref_{i}.png")) |
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" |
|
f" \nEnjoy.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|