File size: 13,779 Bytes
5e373a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# This code is built from the Stable Diffusion repository: https://github.com/CompVis/stable-diffusion, and
# Paint-by-Example repo https://github.com/Fantasy-Studio/Paint-by-Example
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors.
# CreativeML Open RAIL-M
#
# ==========================================================================================
#
# Adobe’s modifications are Copyright 2024 Adobe Research. All rights reserved.
# Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
# LICENSE.md.
#
# ==========================================================================================

from inspect import isfunction
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
import glob

from ldm.modules.diffusionmodules.util import checkpoint


def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
            nn.Linear(dim, inner_dim),
            nn.GELU()
        ) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


class LinearAttention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
        k = k.softmax(dim=-1)  
        context = torch.einsum('bhdn,bhen->bhde', k, v)
        out = torch.einsum('bhde,bhdn->bhen', context, q)
        out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
        return self.to_out(out)


class SpatialSelfAttention(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
        q = rearrange(q, 'b c h w -> b (h w) c')
        k = rearrange(k, 'b c h w -> b c (h w)')
        w_ = torch.einsum('bij,bjk->bik', q, k)

        w_ = w_ * (int(c)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = rearrange(v, 'b c h w -> b c (h w)')
        w_ = rearrange(w_, 'b i j -> b j i')
        h_ = torch.einsum('bij,bjk->bik', v, w_)
        h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
        h_ = self.proj_out(h_)

        return x+h_


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., only_crossref=False):
        super().__init__()
        inner_dim = dim_head * heads
        # forcing attention to only attend on vectors of same size
        # breaking the image2text attention
        context_dim = default(context_dim, query_dim)
                
        # print('creating cross attention. Query dim', query_dim, ' context dim', context_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim),
            nn.Dropout(dropout)
        )
        
        self.only_crossref = only_crossref
        if only_crossref:
            self.merge_attentions = zero_module(nn.Conv2d(self.heads * 2,
                                                self.heads,
                                                kernel_size=1,
                                                stride=1,
                                                padding=0))
        else:
            self.merge_attentions = zero_module(nn.Conv2d(self.heads * 3,
                                                self.heads,
                                                kernel_size=1,
                                                stride=1,
                                                padding=0))
            
        
        self.merge_attentions_missing = zero_module(nn.Conv2d(self.heads * 2,
                                              self.heads,
                                              kernel_size=1,
                                              stride=1,
                                              padding=0))
        

    def forward(self, x, context=None, mask=None, passed_qkv=None, masks=None, corresp=None, missing_region=None):
        is_self_attention = context is None
        
        # if masks is not None:
        #     print(is_self_attention, masks.keys())
        
        h = self.heads
        
        # if passed_qkv is not None:
        #     assert context is None
            
        #     _,_,_,_, x_features = passed_qkv
        #     assert x_features is not None
            
        #     # print('x shape', x.shape, 'x features', x_features.shape)
        #     # breakpoint()
        #     x = torch.concat([x, x_features], dim=1)
        
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)
        
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
        
        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

        if exists(mask):
            assert False
            mask = rearrange(mask, 'b ... -> b (...)')
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)
        out = einsum('b i j, b j d -> b i d', attn, v)
        inter_out = rearrange(out, '(b h) n d -> b h n d', h=h)
        
        combined_attention = inter_out
        out = rearrange(combined_attention, 'b h n d -> b n (h d)', h=h)
        
        final_out = self.to_out(out)
        
        if is_self_attention:
            return final_out, q, k, v, inter_out #TODO add attn out
        else:
            return final_out


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
                                    heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
        self.attn3 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    # TODO add attn in
    def forward(self, x, context=None, passed_qkv=None, masks=None, corresp=None):
        if passed_qkv is None:
            return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
        else:
            q, k, v, attn, x_features = passed_qkv
            d = int(np.sqrt(q.shape[1]))
            current_mask = masks[d]
            if corresp:
                current_corresp, missing_region = corresp[d]
                current_corresp = current_corresp.float()
                missing_region = missing_region.float()
            else:
                raise ValueError('cannot have empty corresp')
                current_corresp = None
                missing_region = current_mask.float()
            # breakpoint()
            stuff = [q, k, v, attn, x_features, current_mask, current_corresp, missing_region]
            for element in stuff:
                assert element is not None
            return checkpoint(self._forward, (x, context, q, k, v, attn, x_features, current_mask, current_corresp, missing_region), self.parameters(), self.checkpoint)

    # TODO add attn in
    def _forward(self, x, context=None, q=None, k=None, v=None, attn=None, passed_x=None, masks=None, corresp=None, missing_region=None):
        if q is not None:
            passed_qkv = (q, k, v, attn, passed_x)
        else:
            passed_qkv = None
        x_features = self.norm1(x)
        attended_x, q, k, v, attn = self.attn1(x_features, passed_qkv=passed_qkv, masks=masks, corresp=corresp, missing_region=missing_region)
        x = attended_x + x
        # killing CLIP features        
        
        if passed_x is not None:
            normed_x = self.norm2(x)
            attn_out  = self.attn3(normed_x, context=passed_x)
            x = attn_out + x
            # then use y + x
            # print('y shape', y.shape, ' x shape', x.shape)
        
        x = self.ff(self.norm3(x)) + x
        return x, q, k, v, attn, x_features


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)
        
        # print('creating spatial transformer')
        # print('in channels', in_channels, 'inner dim', inner_dim)

        self.proj_in = nn.Conv2d(in_channels,
                                 inner_dim,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)]
        )

        self.proj_out = zero_module(nn.Conv2d(inner_dim,
                                              in_channels,
                                              kernel_size=1,
                                              stride=1,
                                              padding=0))

    # TODO add attn in and corresp
    def forward(self, x, context=None, passed_qkv=None, masks=None, corresp=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        # print('spatial transformer x shape given', x.shape)
        # if context is not None:
        #     print('also context was provided with shape ', context.shape)
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c')
        
        qkvs = []
        for block in self.transformer_blocks:
            x, q, k, v, attn, x_features = block(x, context=context, passed_qkv=passed_qkv, masks=masks, corresp=corresp)
            qkv = (q,k,v,attn, x_features)
            qkvs.append(qkv)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
        x = self.proj_out(x)
        return x + x_in, qkvs