File size: 9,743 Bytes
5e373a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# Copyright 2024 Adobe. All rights reserved.
import numpy as np
import torch
import matplotlib.pyplot as plt
import torchvision.transforms.functional as F
import glob
import torchvision
from PIL import Image
import time
import os
import tqdm
from torch.utils.data import Dataset
import pathlib
import cv2
from PIL import Image
import os
import json
import albumentations as A
def get_tensor(normalize=True, toTensor=True):
transform_list = []
if toTensor:
transform_list += [torchvision.transforms.ToTensor()]
if normalize:
# transform_list += [torchvision.transforms.Normalize((0.0, 0.0, 0.0),
# (10.0, 10.0, 10.0))]
transform_list += [torchvision.transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return torchvision.transforms.Compose(transform_list)
def get_tensor_clip(normalize=True, toTensor=True):
transform_list = [torchvision.transforms.Resize((224,224))]
if toTensor:
transform_list += [torchvision.transforms.ToTensor()]
if normalize:
transform_list += [torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))]
return torchvision.transforms.Compose(transform_list)
def get_tensor_dino(normalize=True, toTensor=True):
transform_list = [torchvision.transforms.Resize((224,224))]
if toTensor:
transform_list += [torchvision.transforms.ToTensor()]
if normalize:
transform_list += [lambda x: 255.0 * x[:3],
torchvision.transforms.Normalize(
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
)]
return torchvision.transforms.Compose(transform_list)
def crawl_folders(folder_path):
# glob crawl
all_files = []
folders = glob.glob(f'{folder_path}/*')
for folder in folders:
src_paths = glob.glob(f'{folder}/src_*png')
all_files.extend(src_paths)
return all_files
def get_grid(size):
y = np.repeat(np.arange(size)[None, ...], size)
y = y.reshape(size, size)
x = y.transpose()
out = np.stack([y,x], -1)
return out
class CollageDataset(Dataset):
def __init__(self, split_files, image_size, embedding_type, warping_type, blur_warped=False):
self.size = image_size
# depends on the embedding type
if embedding_type == 'clip':
self.get_embedding_vector = get_tensor_clip()
elif embedding_type == 'dino':
self.get_embedding_vector = get_tensor_dino()
self.get_tensor = get_tensor()
self.resize = torchvision.transforms.Resize(size=(image_size, image_size))
self.to_mask_tensor = get_tensor(normalize=False)
self.src_paths = crawl_folders(split_files)
print('current split size', len(self.src_paths))
print('for dir', split_files)
assert warping_type in ['collage', 'flow', 'mix']
self.warping_type = warping_type
self.mask_threshold = 0.85
self.blur_t = torchvision.transforms.GaussianBlur(kernel_size=51, sigma=20.0)
self.blur_warped = blur_warped
# self.save_folder = '/mnt/localssd/collage_out'
# os.makedirs(self.save_folder, exist_ok=True)
self.save_counter = 0
self.save_subfolder = None
def __len__(self):
return len(self.src_paths)
def __getitem__(self, idx, depth=0):
if self.warping_type == 'mix':
# randomly sample
warping_type = np.random.choice(['collage', 'flow'])
else:
warping_type = self.warping_type
src_path = self.src_paths[idx]
tgt_path = src_path.replace('src_', 'tgt_')
if warping_type == 'collage':
warped_path = src_path.replace('src_', 'composite_')
mask_path = src_path.replace('src_', 'composite_mask_')
corresp_path = src_path.replace('src_', 'composite_grid_')
corresp_path = corresp_path.split('.')[0]
corresp_path += '.npy'
elif warping_type == 'flow':
warped_path = src_path.replace('src_', 'flow_warped_')
mask_path = src_path.replace('src_', 'flow_mask_')
corresp_path = src_path.replace('src_', 'flow_warped_grid_')
corresp_path = corresp_path.split('.')[0]
corresp_path += '.npy'
else:
raise ValueError
# load reference image, warped image, and target GT image
reference_img = Image.open(src_path).convert('RGB')
gt_img = Image.open(tgt_path).convert('RGB')
warped_img = Image.open(warped_path).convert('RGB')
warping_mask = Image.open(mask_path).convert('RGB')
# resize all
reference_img = self.resize(reference_img)
gt_img = self.resize(gt_img)
warped_img = self.resize(warped_img)
warping_mask = self.resize(warping_mask)
# NO CROPPING PLEASE. ALL INPUTS ARE 512X512
# Random crop
# i, j, h, w = torchvision.transforms.RandomCrop.get_params(
# reference_img, output_size=(512, 512))
# reference_img = torchvision.transforms.functional.crop(reference_img, i, j, h, w)
# gt_img = torchvision.transforms.functional.crop(gt_img, i, j, h, w)
# warped_img = torchvision.transforms.functional.crop(warped_img, i, j, h, w)
# # TODO start using the warping mask
# warping_mask = torchvision.transforms.functional.crop(warping_mask, i, j, h, w)
grid_transformed = torch.tensor(np.load(corresp_path))
# grid_transformed = torchvision.transforms.functional.crop(grid_transformed, i, j, h, w)
# reference_t = to_tensor(reference_img)
gt_t = self.get_tensor(gt_img)
warped_t = self.get_tensor(warped_img)
warping_mask_t = self.to_mask_tensor(warping_mask)
clean_reference_t = self.get_tensor(reference_img)
# compute error to generate mask
blur_t = torchvision.transforms.GaussianBlur(kernel_size=(11,11), sigma=5.0)
reference_clip_img = self.get_embedding_vector(reference_img)
mask = torch.ones_like(gt_t)[:1]
warping_mask_t = warping_mask_t[:1]
good_region = torch.mean(warping_mask_t)
# print('good region', good_region)
# print('good region frac', good_region)
if good_region < 0.4 and depth < 3:
# example too hard, sample something else
# print('bad image, resampling..')
rand_idx = np.random.randint(len(self.src_paths))
return self.__getitem__(rand_idx, depth+1)
# if mask is too large then ignore
# #gaussian inpainting now
missing_mask = warping_mask_t[0] < 0.5
reference = (warped_t.clone() + 1) / 2.0
ref_cv = torch.moveaxis(reference, 0, -1).cpu().numpy()
ref_cv = (ref_cv * 255).astype(np.uint8)
cv_mask = missing_mask.int().squeeze().cpu().numpy().astype(np.uint8)
kernel = np.ones((7,7))
dilated_mask = cv2.dilate(cv_mask, kernel)
# cv_mask = np.stack([cv_mask]*3, axis=-1)
dst = cv2.inpaint(ref_cv,dilated_mask,5,cv2.INPAINT_NS)
mask_resized = torchvision.transforms.functional.resize(warping_mask_t, (64,64))
# print(mask_resized)
size=512
grid_np = (get_grid(size) / size).astype(np.float16)# 512 x 512 x 2
grid_t = torch.tensor(grid_np).moveaxis(-1, 0) # 512 x 512 x 2
grid_resized = torchvision.transforms.functional.resize(grid_t, (64,64)).to(torch.float16)
changed_pixels = torch.logical_or((torch.abs(grid_resized - grid_transformed)[0] > 0.04) , (torch.abs(grid_resized - grid_transformed)[1] > 0.04))
changed_pixels = changed_pixels.unsqueeze(0)
# changed_pixels = torch.logical_and(changed_pixels, (mask_resized >= 0.3))
changed_pixels = changed_pixels.float()
inpainted_warped = (torch.tensor(dst).moveaxis(-1, 0).float() / 255.0) * 2.0 - 1.0
if self.blur_warped:
inpainted_warped= self.blur_t(inpainted_warped)
out = {"GT": gt_t,"inpaint_image": inpainted_warped,"inpaint_mask": warping_mask_t, "ref_imgs": reference_clip_img, "clean_reference": clean_reference_t, 'grid_transformed': grid_transformed, "changed_pixels": changed_pixels}
# out = {"GT": gt_t,"inpaint_image": inpainted_warped * 0.0,"inpaint_mask": torch.ones_like(warping_mask_t), "ref_imgs": reference_clip_img * 0.0, "clean_reference": gt_t, 'grid_transformed': grid_transformed, "changed_pixels": changed_pixels}
# out = {"GT": gt_t,"inpaint_image": inpainted_warped * 0.0,"inpaint_mask": warping_mask_t, "ref_imgs": reference_clip_img * 0.0, "clean_reference": clean_reference_t, 'grid_transformed': grid_transformed, "changed_pixels": changed_pixels}
# out = {"GT": gt_t,"inpaint_image": warped_t,"inpaint_mask": warping_mask_t, "ref_imgs": reference_clip_img, "clean_reference": clean_reference_t, 'grid_transformed': grid_transformed, 'inpainted': inpainted_warped}
# out_half = {key: out[key].half() for key in out}
# if self.save_counter < 50:
# save_path = f'{self.save_folder}/output_{time.time()}.pt'
# torch.save(out, save_path)
# self.save_counter += 1
return out
|