File size: 9,743 Bytes
5e373a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright 2024 Adobe. All rights reserved.

import numpy as np
import torch
import matplotlib.pyplot as plt
import torchvision.transforms.functional as F
import glob
import torchvision
from PIL import Image
import time
import os
import tqdm
from torch.utils.data import Dataset
import pathlib
import cv2
from PIL import Image
import os
import json
import albumentations as A

def get_tensor(normalize=True, toTensor=True):
    transform_list = []
    if toTensor:
        transform_list += [torchvision.transforms.ToTensor()]

    if normalize:
        # transform_list += [torchvision.transforms.Normalize((0.0, 0.0, 0.0),
        #                                         (10.0, 10.0, 10.0))]
        transform_list += [torchvision.transforms.Normalize((0.5, 0.5, 0.5),
                                                (0.5, 0.5, 0.5))]
    return torchvision.transforms.Compose(transform_list)

def get_tensor_clip(normalize=True, toTensor=True):
    transform_list = [torchvision.transforms.Resize((224,224))]
    if toTensor:
        transform_list += [torchvision.transforms.ToTensor()]

    if normalize:
        transform_list += [torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
                                                (0.26862954, 0.26130258, 0.27577711))]
    return torchvision.transforms.Compose(transform_list)

def get_tensor_dino(normalize=True, toTensor=True):
    transform_list = [torchvision.transforms.Resize((224,224))]
    if toTensor:
        transform_list += [torchvision.transforms.ToTensor()]

    if normalize:
        transform_list += [lambda x: 255.0 * x[:3],
                           torchvision.transforms.Normalize(
                            mean=(123.675, 116.28, 103.53),
                            std=(58.395, 57.12, 57.375),
                            )]
    return torchvision.transforms.Compose(transform_list)

def crawl_folders(folder_path):
    # glob crawl
    all_files = []
    folders = glob.glob(f'{folder_path}/*')
    
    for folder in folders:
        src_paths = glob.glob(f'{folder}/src_*png')
        all_files.extend(src_paths)
    return all_files

def get_grid(size):
    y = np.repeat(np.arange(size)[None, ...], size)
    y = y.reshape(size, size)
    x = y.transpose()
    out = np.stack([y,x], -1)
    return out
    

class CollageDataset(Dataset):
    def __init__(self, split_files, image_size, embedding_type, warping_type, blur_warped=False):
        self.size = image_size
        # depends on the embedding type
        if embedding_type == 'clip':
            self.get_embedding_vector = get_tensor_clip()
        elif embedding_type == 'dino':
            self.get_embedding_vector = get_tensor_dino()
        self.get_tensor = get_tensor()
        self.resize =  torchvision.transforms.Resize(size=(image_size, image_size))
        self.to_mask_tensor = get_tensor(normalize=False)
        
        self.src_paths = crawl_folders(split_files)
        print('current split size', len(self.src_paths))
        print('for dir', split_files)
        
        assert warping_type in ['collage', 'flow', 'mix']
        self.warping_type = warping_type
        
        self.mask_threshold = 0.85
        
        self.blur_t = torchvision.transforms.GaussianBlur(kernel_size=51, sigma=20.0)
        self.blur_warped = blur_warped
        
        # self.save_folder = '/mnt/localssd/collage_out'
        # os.makedirs(self.save_folder, exist_ok=True)
        self.save_counter = 0
        self.save_subfolder = None
    
    def __len__(self):
        return len(self.src_paths)
    
    
    def __getitem__(self, idx, depth=0):
        
        if self.warping_type == 'mix':
            # randomly sample
            warping_type = np.random.choice(['collage', 'flow'])
        else:
            warping_type = self.warping_type
        
        src_path = self.src_paths[idx]
        tgt_path = src_path.replace('src_', 'tgt_')
        
        if warping_type == 'collage':
            warped_path = src_path.replace('src_', 'composite_')
            mask_path = src_path.replace('src_', 'composite_mask_')
            corresp_path = src_path.replace('src_', 'composite_grid_')
            corresp_path = corresp_path.split('.')[0]
            corresp_path += '.npy'
        elif warping_type == 'flow':
            warped_path = src_path.replace('src_', 'flow_warped_')
            mask_path = src_path.replace('src_', 'flow_mask_')
            corresp_path = src_path.replace('src_', 'flow_warped_grid_')
            corresp_path = corresp_path.split('.')[0]
            corresp_path += '.npy'
        else:
            raise ValueError
        
        # load reference image, warped image, and target GT image
        reference_img = Image.open(src_path).convert('RGB')
        gt_img = Image.open(tgt_path).convert('RGB')
        warped_img = Image.open(warped_path).convert('RGB')
        warping_mask = Image.open(mask_path).convert('RGB')
        
        # resize all 
        reference_img = self.resize(reference_img)
        gt_img = self.resize(gt_img)
        warped_img = self.resize(warped_img)
        warping_mask = self.resize(warping_mask)

        
        # NO CROPPING PLEASE. ALL INPUTS ARE 512X512
        # Random crop
        # i, j, h, w = torchvision.transforms.RandomCrop.get_params(
        #     reference_img, output_size=(512, 512))
        
        # reference_img = torchvision.transforms.functional.crop(reference_img, i, j, h, w)
        # gt_img = torchvision.transforms.functional.crop(gt_img, i, j, h, w)
        # warped_img = torchvision.transforms.functional.crop(warped_img, i, j, h, w)
        # # TODO start using the warping mask
        # warping_mask = torchvision.transforms.functional.crop(warping_mask, i, j, h, w)
        
        grid_transformed = torch.tensor(np.load(corresp_path))
        # grid_transformed = torchvision.transforms.functional.crop(grid_transformed, i, j, h, w)
        
        
        
        # reference_t = to_tensor(reference_img)
        gt_t = self.get_tensor(gt_img)
        warped_t = self.get_tensor(warped_img)
        warping_mask_t = self.to_mask_tensor(warping_mask)
        clean_reference_t = self.get_tensor(reference_img)
        # compute error to generate mask
        blur_t = torchvision.transforms.GaussianBlur(kernel_size=(11,11), sigma=5.0)
        
        reference_clip_img = self.get_embedding_vector(reference_img)        
        
        mask = torch.ones_like(gt_t)[:1]
        warping_mask_t = warping_mask_t[:1]
        
        good_region = torch.mean(warping_mask_t)
        # print('good region', good_region)
        # print('good region frac', good_region)
        if good_region < 0.4 and depth < 3:
            # example too hard, sample something else
            # print('bad image, resampling..')
            rand_idx = np.random.randint(len(self.src_paths))
            return self.__getitem__(rand_idx, depth+1)
        
        # if mask is too large then ignore
        
        # #gaussian inpainting now
        missing_mask = warping_mask_t[0] < 0.5
        
        
        reference = (warped_t.clone() + 1)  / 2.0
        ref_cv = torch.moveaxis(reference, 0, -1).cpu().numpy()
        ref_cv = (ref_cv * 255).astype(np.uint8)
        cv_mask = missing_mask.int().squeeze().cpu().numpy().astype(np.uint8)
        kernel = np.ones((7,7))
        dilated_mask = cv2.dilate(cv_mask, kernel)
        # cv_mask = np.stack([cv_mask]*3, axis=-1)
        dst = cv2.inpaint(ref_cv,dilated_mask,5,cv2.INPAINT_NS)
        
        mask_resized = torchvision.transforms.functional.resize(warping_mask_t, (64,64))
        # print(mask_resized)
        size=512
        grid_np = (get_grid(size) / size).astype(np.float16)# 512 x 512 x 2
        grid_t = torch.tensor(grid_np).moveaxis(-1, 0) # 512 x 512 x 2
        grid_resized = torchvision.transforms.functional.resize(grid_t, (64,64)).to(torch.float16)
        changed_pixels = torch.logical_or((torch.abs(grid_resized - grid_transformed)[0] > 0.04) , (torch.abs(grid_resized - grid_transformed)[1] > 0.04))
        changed_pixels = changed_pixels.unsqueeze(0)
        # changed_pixels = torch.logical_and(changed_pixels, (mask_resized >= 0.3))
        changed_pixels = changed_pixels.float()
        
        inpainted_warped = (torch.tensor(dst).moveaxis(-1, 0).float() / 255.0) * 2.0 - 1.0
        
        if self.blur_warped:
            inpainted_warped= self.blur_t(inpainted_warped)
        
        out = {"GT": gt_t,"inpaint_image": inpainted_warped,"inpaint_mask": warping_mask_t, "ref_imgs": reference_clip_img, "clean_reference": clean_reference_t, 'grid_transformed': grid_transformed, "changed_pixels": changed_pixels}
        # out = {"GT": gt_t,"inpaint_image": inpainted_warped * 0.0,"inpaint_mask": torch.ones_like(warping_mask_t), "ref_imgs": reference_clip_img * 0.0, "clean_reference": gt_t, 'grid_transformed': grid_transformed, "changed_pixels": changed_pixels}
        # out = {"GT": gt_t,"inpaint_image": inpainted_warped * 0.0,"inpaint_mask": warping_mask_t, "ref_imgs": reference_clip_img * 0.0, "clean_reference": clean_reference_t, 'grid_transformed': grid_transformed, "changed_pixels": changed_pixels}

        # out = {"GT": gt_t,"inpaint_image": warped_t,"inpaint_mask": warping_mask_t, "ref_imgs": reference_clip_img, "clean_reference": clean_reference_t, 'grid_transformed': grid_transformed, 'inpainted': inpainted_warped}
        # out_half = {key: out[key].half() for key in out}
        # if self.save_counter < 50:
        #     save_path = f'{self.save_folder}/output_{time.time()}.pt'
        #     torch.save(out, save_path)
        #     self.save_counter += 1
        
        return out