Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import random | |
import torch | |
from torch import nn | |
from typing import Tuple | |
import os | |
import subprocess as sp | |
from PIL import Image | |
from torchvision import transforms | |
from decord import VideoReader, cpu | |
class PadCrop(nn.Module): | |
def __init__(self, n_samples, randomize=True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.randomize = randomize | |
def __call__(self, signal): | |
n, s = signal.shape | |
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item() | |
end = start + self.n_samples | |
output = signal.new_zeros([n, self.n_samples]) | |
output[:, :min(s, self.n_samples)] = signal[:, start:end] | |
return output | |
class PadCrop_Normalized_T(nn.Module): | |
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True): | |
super().__init__() | |
self.n_samples = n_samples | |
self.sample_rate = sample_rate | |
self.randomize = randomize | |
def __call__(self, source: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int, torch.Tensor]: | |
n_channels, n_samples = source.shape | |
# Calculate the duration of the audio in seconds | |
total_duration = n_samples // self.sample_rate | |
# If the audio is shorter than the desired length, pad it | |
upper_bound = max(0, n_samples - self.n_samples) | |
# If randomize is False, always start at the beginning of the audio | |
offset = 0 | |
if self.randomize and n_samples > self.n_samples: | |
valid_offsets = [ | |
i * self.sample_rate for i in range(0, total_duration, 10) | |
if i * self.sample_rate + self.n_samples <= n_samples and | |
(total_duration <= 20 or total_duration - i >= 15) | |
] | |
if valid_offsets: | |
offset = random.choice(valid_offsets) | |
# Calculate the start and end times of the chunk | |
t_start = offset / (upper_bound + self.n_samples) | |
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) | |
# Create the chunk | |
chunk = source.new_zeros([n_channels, self.n_samples]) | |
# Copy the audio into the chunk | |
chunk[:, :min(n_samples, self.n_samples)] = source[:, offset:offset + self.n_samples] | |
# Calculate the start and end times of the chunk in seconds | |
seconds_start = math.floor(offset / self.sample_rate) | |
seconds_total = math.ceil(n_samples / self.sample_rate) | |
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't | |
padding_mask = torch.zeros([self.n_samples]) | |
padding_mask[:min(n_samples, self.n_samples)] = 1 | |
return ( | |
chunk, | |
t_start, | |
t_end, | |
seconds_start, | |
seconds_total, | |
padding_mask | |
) | |
class PhaseFlipper(nn.Module): | |
"Randomly invert the phase of a signal" | |
def __init__(self, p=0.5): | |
super().__init__() | |
self.p = p | |
def __call__(self, signal): | |
return -signal if (random.random() < self.p) else signal | |
class Mono(nn.Module): | |
def __call__(self, signal): | |
return torch.mean(signal, dim=0, keepdims=True) if len(signal.shape) > 1 else signal | |
class Stereo(nn.Module): | |
def __call__(self, signal): | |
signal_shape = signal.shape | |
# Check if it's mono | |
if len(signal_shape) == 1: # s -> 2, s | |
signal = signal.unsqueeze(0).repeat(2, 1) | |
elif len(signal_shape) == 2: | |
if signal_shape[0] == 1: #1, s -> 2, s | |
signal = signal.repeat(2, 1) | |
elif signal_shape[0] > 2: #?, s -> 2,s | |
signal = signal[:2, :] | |
return signal | |
def adjust_video_duration(video_tensor, duration, target_fps): | |
current_duration = video_tensor.shape[0] | |
target_duration = duration * target_fps | |
if current_duration > target_duration: | |
video_tensor = video_tensor[:target_duration] | |
elif current_duration < target_duration: | |
last_frame = video_tensor[-1:] | |
repeat_times = target_duration - current_duration | |
video_tensor = torch.cat((video_tensor, last_frame.repeat(repeat_times, 1, 1, 1)), dim=0) | |
return video_tensor | |
def read_video(filepath, seek_time=0., duration=-1, target_fps=2): | |
if filepath is None: | |
return torch.zeros((int(duration * target_fps), 3, 224, 224)) | |
ext = os.path.splitext(filepath)[1].lower() | |
if ext in ['.jpg', '.jpeg', '.png']: | |
resize_transform = transforms.Resize((224, 224)) | |
image = Image.open(filepath).convert("RGB") | |
frame = transforms.ToTensor()(image).unsqueeze(0) | |
frame = resize_transform(frame) | |
target_frames = int(duration * target_fps) | |
frame = frame.repeat(int(math.ceil(target_frames / frame.shape[0])), 1, 1, 1)[:target_frames] | |
assert frame.shape[0] == target_frames, f"The shape of frame is {frame.shape}" | |
return frame | |
vr = VideoReader(filepath, ctx=cpu(0)) | |
fps = vr.get_avg_fps() | |
total_frames = len(vr) | |
seek_frame = int(seek_time * fps) | |
if duration > 0: | |
total_frames_to_read = int(target_fps * duration) | |
frame_interval = int(math.ceil(fps / target_fps)) | |
end_frame = min(seek_frame + total_frames_to_read * frame_interval, total_frames) | |
frame_ids = list(range(seek_frame, end_frame, frame_interval)) | |
else: | |
frame_interval = int(math.ceil(fps / target_fps)) | |
frame_ids = list(range(0, total_frames, frame_interval)) | |
frames = vr.get_batch(frame_ids).asnumpy() | |
frames = torch.from_numpy(frames).permute(0, 3, 1, 2) | |
if frames.shape[2] != 224 or frames.shape[3] != 224: | |
resize_transform = transforms.Resize((224, 224)) | |
frames = resize_transform(frames) | |
video_tensor = adjust_video_duration(frames, duration, target_fps) | |
assert video_tensor.shape[0] == duration * target_fps, f"The shape of video_tensor is {video_tensor.shape}" | |
return video_tensor | |
def merge_video_audio(video_path, audio_path, output_path, start_time, duration, target_width=None, target_height=None): | |
command = [ | |
'ffmpeg', | |
'-y', | |
'-ss', str(start_time), | |
'-t', str(duration), | |
'-i', video_path, | |
'-i', audio_path, | |
'-c:v', 'copy', | |
'-c:a', 'aac', | |
'-map', '0:v:0', | |
'-map', '1:a:0', | |
'-shortest', | |
'-strict', 'experimental', | |
] | |
# 如果指定了目标尺寸,添加缩放参数 | |
if target_width is not None and target_height is not None: | |
command.extend(['-vf', f'scale={target_width}:{target_height}']) | |
command.append(output_path) | |
try: | |
sp.run(command, check=True) | |
print(f"Successfully merged audio and video into {output_path}") | |
return output_path | |
except sp.CalledProcessError as e: | |
print(f"Error merging audio and video: {e}") | |
return None | |
def load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total): | |
if audio_path is None: | |
return torch.zeros((2, int(sample_rate * seconds_total))) | |
audio_tensor, sr = torchaudio.load(audio_path) | |
start_index = int(sample_rate * seconds_start) | |
target_length = int(sample_rate * seconds_total) | |
end_index = start_index + target_length | |
audio_tensor = audio_tensor[:, start_index:end_index] | |
if audio_tensor.shape[1] < target_length: | |
pad_length = target_length - audio_tensor.shape[1] | |
audio_tensor = F.pad(audio_tensor, (pad_length, 0)) | |
return audio_tensor |