Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
import torchaudio | |
import os | |
from einops import rearrange | |
import gc | |
import spaces | |
import gradio as gr | |
import torch | |
import torchaudio | |
import os | |
from einops import rearrange | |
from stable_audio_tools import get_pretrained_model | |
from stable_audio_tools.inference.generation import generate_diffusion_cond | |
from stable_audio_tools.data.utils import read_video, merge_video_audio, load_and_process_audio | |
import stat | |
import platform | |
import logging | |
from transformers import logging as transformers_logging | |
transformers_logging.set_verbosity_error() | |
logging.getLogger("transformers").setLevel(logging.ERROR) | |
model, model_config = get_pretrained_model('HKUSTAudio/AudioX') | |
sample_rate = model_config["sample_rate"] | |
sample_size = model_config["sample_size"] | |
TEMP_DIR = "tmp/gradio" | |
os.makedirs(TEMP_DIR, exist_ok=True) | |
os.chmod(TEMP_DIR, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) | |
VIDEO_TEMP_DIR = os.path.join(TEMP_DIR, "videos") | |
os.makedirs(VIDEO_TEMP_DIR, exist_ok=True) | |
os.chmod(VIDEO_TEMP_DIR, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) | |
def generate_cond( | |
prompt, | |
negative_prompt=None, | |
video_file=None, | |
audio_prompt_file=None, | |
audio_prompt_path=None, | |
seconds_start=0, | |
seconds_total=10, | |
cfg_scale=7.0, | |
steps=100, | |
preview_every=0, | |
seed=-1, | |
sampler_type="dpmpp-3m-sde", | |
sigma_min=0.03, | |
sigma_max=500, | |
cfg_rescale=0.0, | |
use_init=False, | |
init_audio=None, | |
init_noise_level=0.1, | |
mask_cropfrom=None, | |
mask_pastefrom=None, | |
mask_pasteto=None, | |
mask_maskstart=None, | |
mask_maskend=None, | |
mask_softnessL=None, | |
mask_softnessR=None, | |
mask_marination=None, | |
batch_size=1 | |
): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
print(f"Prompt: {prompt}") | |
preview_images = [] | |
if preview_every == 0: | |
preview_every = None | |
try: | |
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available() | |
except Exception: | |
has_mps = False | |
if has_mps: | |
device = torch.device("mps") | |
elif torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
global model | |
model = model.to(device) | |
target_fps = model_config.get("video_fps", 5) | |
model_type = model_config.get("model_type", "diffusion_cond") | |
if video_file is not None: | |
actual_video_path = video_file['name'] if isinstance(video_file, dict) else video_file.name | |
else: | |
actual_video_path = None | |
if audio_prompt_file is not None: | |
audio_path = audio_prompt_file.name | |
elif audio_prompt_path: | |
audio_path = audio_prompt_path.strip() | |
else: | |
audio_path = None | |
Video_tensors = read_video(actual_video_path, seek_time=seconds_start, duration=seconds_total, target_fps=target_fps) | |
audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total) | |
audio_tensor = audio_tensor.to(device) | |
seconds_input = sample_size / sample_rate | |
if not prompt: | |
prompt = "" | |
conditioning = [{ | |
"video_prompt": [Video_tensors.unsqueeze(0)], | |
"text_prompt": prompt, | |
"audio_prompt": audio_tensor.unsqueeze(0), | |
"seconds_start": seconds_start, | |
"seconds_total": seconds_input | |
}] | |
if negative_prompt: | |
negative_conditioning = [{ | |
"video_prompt": [Video_tensors.unsqueeze(0)], | |
"text_prompt": negative_prompt, | |
"audio_prompt": audio_tensor.unsqueeze(0), | |
"seconds_start": seconds_start, | |
"seconds_total": seconds_total | |
}] * 1 | |
else: | |
negative_conditioning = None | |
seed = int(seed) | |
if not use_init: | |
init_audio = None | |
input_sample_size = sample_size | |
def progress_callback(callback_info): | |
nonlocal preview_images | |
denoised = callback_info["denoised"] | |
current_step = callback_info["i"] | |
sigma = callback_info["sigma"] | |
if (current_step - 1) % preview_every == 0: | |
if model.pretransform is not None: | |
denoised = model.pretransform.decode(denoised) | |
denoised = rearrange(denoised, "b d n -> d (b n)") | |
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate) | |
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})")) | |
if model_type == "diffusion_cond": | |
audio = generate_diffusion_cond( | |
model, | |
conditioning=conditioning, | |
negative_conditioning=negative_conditioning, | |
steps=steps, | |
cfg_scale=cfg_scale, | |
batch_size=batch_size, | |
sample_size=input_sample_size, | |
sample_rate=sample_rate, | |
seed=seed, | |
device=device, | |
sampler_type=sampler_type, | |
sigma_min=sigma_min, | |
sigma_max=sigma_max, | |
init_audio=init_audio, | |
init_noise_level=init_noise_level, | |
mask_args=None, | |
callback=progress_callback if preview_every is not None else None, | |
scale_phi=cfg_rescale | |
) | |
audio = rearrange(audio, "b d n -> d (b n)") | |
samples_10s = 10 * sample_rate | |
audio = audio[:, :samples_10s] | |
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
output_dir = "demo_result" | |
os.makedirs(output_dir, exist_ok=True) | |
output_audio_path = f"{output_dir}/output.wav" | |
torchaudio.save(output_audio_path, audio, sample_rate) | |
if actual_video_path: | |
output_video_path = f"{output_dir}/{os.path.basename(actual_video_path)}" | |
target_width = 1280 | |
target_height = 720 | |
merge_video_audio( | |
actual_video_path, | |
output_audio_path, | |
output_video_path, | |
seconds_start, | |
seconds_total | |
) | |
else: | |
output_video_path = None | |
del actual_video_path | |
torch.cuda.empty_cache() | |
gc.collect() | |
return output_video_path, output_audio_path | |
with gr.Blocks() as interface: | |
gr.Markdown( | |
""" | |
# π§AudioX: Diffusion Transformer for Anything-to-Audio Generation | |
**[Paper](https://arxiv.org/abs/2503.10522) Β· [Project Page](https://zeyuet.github.io/AudioX/) Β· [Huggingface](https://huggingface.co/HKUSTAudio/AudioX) Β· [GitHub](https://github.com/ZeyueT/AudioX)** | |
""" | |
) | |
with gr.Tab("Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
show_label=False, | |
placeholder="Enter your prompt" | |
) | |
negative_prompt = gr.Textbox( | |
show_label=False, | |
placeholder="Negative prompt", | |
visible=False | |
) | |
video_file = gr.File(label="Upload Video File") | |
audio_prompt_file = gr.File( | |
label="Upload Audio Prompt File", | |
visible=False | |
) | |
audio_prompt_path = gr.Textbox( | |
label="Audio Prompt Path", | |
placeholder="Enter audio file path", | |
visible=False | |
) | |
with gr.Row(): | |
with gr.Column(scale=6): | |
with gr.Accordion("Video Params", open=False): | |
seconds_start = gr.Slider( | |
minimum=0, | |
maximum=512, | |
step=1, | |
value=0, | |
label="Video Seconds Start" | |
) | |
seconds_total = gr.Slider( | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=10, | |
label="Seconds Total", | |
interactive=False | |
) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Accordion("Sampler Params", open=False): | |
steps = gr.Slider( | |
minimum=1, | |
maximum=500, | |
step=1, | |
value=100, | |
label="Steps" | |
) | |
preview_every = gr.Slider( | |
minimum=0, | |
maximum=100, | |
step=1, | |
value=0, | |
label="Preview Every" | |
) | |
cfg_scale = gr.Slider( | |
minimum=0.0, | |
maximum=25.0, | |
step=0.1, | |
value=7.0, | |
label="CFG Scale" | |
) | |
seed = gr.Textbox( | |
label="Seed (set to -1 for random seed)", | |
value="-1" | |
) | |
sampler_type = gr.Dropdown( | |
choices=[ | |
"dpmpp-2m-sde", | |
"dpmpp-3m-sde", | |
"k-heun", | |
"k-lms", | |
"k-dpmpp-2s-ancestral", | |
"k-dpm-2", | |
"k-dpm-fast" | |
], | |
label="Sampler Type", | |
value="dpmpp-3m-sde" | |
) | |
sigma_min = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.01, | |
value=0.03, | |
label="Sigma Min" | |
) | |
sigma_max = gr.Slider( | |
minimum=0.0, | |
maximum=1000.0, | |
step=0.1, | |
value=500, | |
label="Sigma Max" | |
) | |
cfg_rescale = gr.Slider( | |
minimum=0.0, | |
maximum=1, | |
step=0.01, | |
value=0.0, | |
label="CFG Rescale Amount" | |
) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Accordion("Init Audio", open=False, visible=False): | |
init_audio_checkbox = gr.Checkbox(label="Use Init Audio") | |
init_audio_input = gr.Audio(label="Init Audio") | |
init_noise_level = gr.Slider( | |
minimum=0.1, | |
maximum=100.0, | |
step=0.01, | |
value=0.1, | |
label="Init Noise Level" | |
) | |
with gr.Row(): | |
generate_button = gr.Button("Generate", variant="primary") | |
with gr.Row(): | |
with gr.Column(scale=6): | |
video_output = gr.Video(label="Output Video", interactive=False) | |
audio_output = gr.Audio(label="Output Audio", interactive=False) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
video_file, | |
audio_prompt_file, | |
audio_prompt_path, | |
seconds_start, | |
seconds_total, | |
cfg_scale, | |
steps, | |
preview_every, | |
seed, | |
sampler_type, | |
sigma_min, | |
sigma_max, | |
cfg_rescale, | |
init_audio_checkbox, | |
init_audio_input, | |
init_noise_level | |
] | |
generate_button.click( | |
fn=generate_cond, | |
inputs=inputs, | |
outputs=[video_output, audio_output] | |
) | |
gr.Markdown("## Examples") | |
with gr.Accordion("Click to show examples", open=False): | |
with gr.Row(): | |
gr.Markdown("**π Task: Text-to-Audio**") | |
with gr.Column(scale=1.2): | |
gr.Markdown("Prompt: *Typing on a keyboard*") | |
ex1 = gr.Button("Load Example") | |
with gr.Column(scale=1.2): | |
gr.Markdown("Prompt: *Ocean waves crashing*") | |
ex2 = gr.Button("Load Example") | |
with gr.Column(scale=1.2): | |
gr.Markdown("Prompt: *Footsteps in snow*") | |
ex3 = gr.Button("Load Example") | |
with gr.Row(): | |
gr.Markdown("**πΆ Task: Text-to-Music**") | |
with gr.Column(scale=1.2): | |
gr.Markdown("Prompt: *An orchestral music piece for a fantasy world.*") | |
ex4 = gr.Button("Load Example") | |
with gr.Column(scale=1.2): | |
gr.Markdown("Prompt: *Produce upbeat electronic music for a dance party*") | |
ex5 = gr.Button("Load Example") | |
with gr.Column(scale=1.2): | |
gr.Markdown("Prompt: *A dreamy lo-fi beat with vinyl crackle*") | |
ex6 = gr.Button("Load Example") | |
ex1.click(lambda: ["Typing on a keyboard", None, None, None, None, 0, 10, 7.0, 100, 0, "1225575558", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs) | |
ex2.click(lambda: ["Ocean waves crashing", None, None, None, None, 0, 10, 7.0, 100, 0, "3615819170", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs) | |
ex3.click(lambda: ["Footsteps in snow", None, None, None, None, 0, 10, 7.0, 100, 0, "1703896811", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs) | |
ex4.click(lambda: ["An orchestral music piece for a fantasy world.", None, None, None, None, 0, 10, 7.0, 100, 0, "1561898939", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs) | |
ex5.click(lambda: ["Produce upbeat electronic music for a dance party", None, None, None, None, 0, 10, 7.0, 100, 0, "406022999", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs) | |
ex6.click(lambda: ["A dreamy lo-fi beat with vinyl crackle", None, None, None, None, 0, 10, 7.0, 100, 0, "807934770", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs) | |
interface.queue(5).launch(server_name="0.0.0.0", server_port=7860, share=True) |