Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,292 Bytes
8ab1cf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import torch
import logging, warnings
import string
import typing as tp
import gc
from .adp import NumberEmbedder
from ..inference.utils import set_audio_channels
from .factory import create_pretransform_from_config
from .pretransforms import Pretransform
from .utils import load_ckpt_state_dict
from torch import nn
from transformers import AutoProcessor, CLIPVisionModelWithProjection
import einops
from .temptransformer import SA_Transformer
from torchvision import transforms
import torch
import einops
import torchvision.transforms as transforms
class Conditioner(nn.Module):
def __init__(
self,
dim: int,
output_dim: int,
project_out: bool = False
):
super().__init__()
self.dim = dim
self.output_dim = output_dim
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
def forward(self, x: tp.Any) -> tp.Any:
raise NotImplementedError()
class IntConditioner(Conditioner):
def __init__(self,
output_dim: int,
min_val: int=0,
max_val: int=512
):
super().__init__(output_dim, output_dim)
self.min_val = min_val
self.max_val = max_val
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True)
def forward(self, ints: tp.List[int], device=None) -> tp.Any:
#self.int_embedder.to(device)
ints = torch.tensor(ints).to(device)
ints = ints.clamp(self.min_val, self.max_val)
int_embeds = self.int_embedder(ints).unsqueeze(1)
return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)]
class NumberConditioner(Conditioner):
'''
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
'''
def __init__(self,
output_dim: int,
min_val: float=0,
max_val: float=1
):
super().__init__(output_dim, output_dim)
self.min_val = min_val
self.max_val = max_val
self.embedder = NumberEmbedder(features=output_dim)
def forward(self, floats: tp.List[float], device=None) -> tp.Any:
# Cast the inputs to floats
floats = [float(x) for x in floats]
floats = torch.tensor(floats).to(device)
floats = floats.clamp(self.min_val, self.max_val)
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
# Cast floats to same type as embedder
embedder_dtype = next(self.embedder.parameters()).dtype
normalized_floats = normalized_floats.to(embedder_dtype)
float_embeds = self.embedder(normalized_floats).unsqueeze(1)
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
class CLAPTextConditioner(Conditioner):
def __init__(self,
output_dim: int,
clap_ckpt_path,
use_text_features = False,
feature_layer_ix: int = -1,
audio_model_type="HTSAT-base",
enable_fusion=True,
project_out: bool = False,
finetune: bool = False):
super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out)
self.use_text_features = use_text_features
self.feature_layer_ix = feature_layer_ix
self.finetune = finetune
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
if self.finetune:
self.model = model
else:
self.__dict__["model"] = model
state_dict = clap_load_state_dict(clap_ckpt_path)
self.model.model.load_state_dict(state_dict, strict=False)
if self.finetune:
self.model.model.text_branch.requires_grad_(True)
self.model.model.text_branch.train()
else:
self.model.model.text_branch.requires_grad_(False)
self.model.model.text_branch.eval()
finally:
logging.disable(previous_level)
del self.model.model.audio_branch
gc.collect()
torch.cuda.empty_cache()
def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"):
prompt_tokens = self.model.tokenizer(prompts)
attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True)
prompt_features = self.model.model.text_branch(
input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True),
attention_mask=attention_mask,
output_hidden_states=True
)["hidden_states"][layer_ix]
return prompt_features, attention_mask
def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
self.model.to(device)
if self.use_text_features:
if len(texts) == 1:
text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device)
text_features = text_features[:1, ...]
text_attention_mask = text_attention_mask[:1, ...]
else:
text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device)
return [self.proj_out(text_features), text_attention_mask]
# Fix for CLAP bug when only one text is passed
if len(texts) == 1:
text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...]
else:
text_embedding = self.model.get_text_embedding(texts, use_tensor=True)
text_embedding = text_embedding.unsqueeze(1).to(device)
return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)]
class CLAPAudioConditioner(Conditioner):
def __init__(self,
output_dim: int,
clap_ckpt_path,
audio_model_type="HTSAT-base",
enable_fusion=True,
project_out: bool = False):
super().__init__(512, output_dim, project_out=project_out)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
import laion_clap
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
if self.finetune:
self.model = model
else:
self.__dict__["model"] = model
state_dict = clap_load_state_dict(clap_ckpt_path)
self.model.model.load_state_dict(state_dict, strict=False)
if self.finetune:
self.model.model.audio_branch.requires_grad_(True)
self.model.model.audio_branch.train()
else:
self.model.model.audio_branch.requires_grad_(False)
self.model.model.audio_branch.eval()
finally:
logging.disable(previous_level)
del self.model.model.text_branch
gc.collect()
torch.cuda.empty_cache()
def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any:
self.model.to(device)
if isinstance(audios, list) or isinstance(audios, tuple):
audios = torch.cat(audios, dim=0)
# Convert to mono
mono_audios = audios.mean(dim=1)
with torch.cuda.amp.autocast(enabled=False):
audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True)
audio_embedding = audio_embedding.unsqueeze(1).to(device)
return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)]
class CLIPConditioner(Conditioner):
CLIP_MODELS = ["clip-vit-base-patch32"]
def __init__(
self,
output_dim: int,
clip_model_name: str = "clip-vit-base-patch32",
video_fps: int = 5,
out_features: str = 128,
enable_grad: bool = False,
in_features: int = 5000,
project_out: bool = False,
):
assert clip_model_name in self.CLIP_MODELS, f"Unknown clip model name: {clip_model_name}"
super().__init__(dim = 768, output_dim=output_dim, project_out=project_out)
sa_depth=4
num_heads=16
dim_head=64
hidden_scale=4
duration = 10
self.clip_model_name=clip_model_name
if self.clip_model_name=='clip-vit-base-patch32':
out_features = 128
temporal_dim=768
self.empty_visual_feat = nn.Parameter(torch.zeros(1, out_features, temporal_dim), requires_grad=True)
nn.init.constant_(self.empty_visual_feat, 0)
in_features = 50*video_fps*duration
self.visual_encoder_model = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-base-patch32')
self.proj = nn.Linear(in_features=in_features, out_features=out_features)
self.in_features = in_features
self.out_features = out_features
self.Temp_transformer = SA_Transformer(temporal_dim, sa_depth, num_heads, dim_head, temporal_dim*hidden_scale, 0.)
self.Temp_pos_embedding = nn.Parameter(torch.randn(1, duration*video_fps, temporal_dim))
clip_mean = [0.48145466, 0.4578275, 0.40821073]
clip_std = [0.26862954, 0.26130258, 0.27577711]
self.preprocess_CLIP = transforms.Compose([
transforms.Normalize(mean=clip_mean, std=clip_std)
])
def process_video_with_custom_preprocessing(self, video_tensor):
video_tensor = video_tensor / 255.0
video_tensor = self.preprocess_CLIP(video_tensor)
return video_tensor
def init_first_from_ckpt(self, path):
model = torch.load(path, map_location="cpu")
if "state_dict" in list(model.keys()):
model = model["state_dict"]
# Remove: module prefix
new_model = {}
for key in model.keys():
new_key = key.replace("module.","")
new_model[new_key] = model[key]
missing, unexpected = self.visual_encoder_model.load_state_dict(new_model, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
def forward(self, Video_tensors: tp.List[torch.Tensor], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
visual_encoder_model = self.visual_encoder_model.eval().to(device)
proj = self.proj.to(device)
original_videos = torch.cat(Video_tensors, dim=0).to(device)
batch_size, time_length, _, _, _ = original_videos.size()
is_zero = torch.all(original_videos == 0, dim=1)
is_zero = torch.all(is_zero, dim=1)
is_zero = torch.all(is_zero, dim=1)
is_zero = torch.all(is_zero, dim=1)
Video_tensors = original_videos
Video_tensors = einops.rearrange(Video_tensors, 'b t c h w -> (b t) c h w')
video_cond_pixel_values = self.process_video_with_custom_preprocessing(video_tensor=Video_tensors.to(device)).to(device)
if self.clip_model_name=='clip-vit-base-patch32':
with torch.no_grad():
outputs = visual_encoder_model(pixel_values=video_cond_pixel_values)
video_hidden = outputs.last_hidden_state
video_hidden = einops.rearrange(video_hidden, '(b t) q h -> (b q) t h',b=batch_size,t=time_length)
video_hidden += self.Temp_pos_embedding
video_hidden = self.Temp_transformer(video_hidden)
video_hidden = einops.rearrange(video_hidden, '(b q) t h -> b (t q) h',b=batch_size,t=time_length)
video_hidden = proj(video_hidden.view(-1, self.in_features))
video_hidden = video_hidden.view(batch_size, self.out_features, -1)
empty_visual_feat = self.empty_visual_feat.expand(batch_size, -1, -1)
is_zero_expanded = is_zero.view(batch_size, 1, 1)
video_hidden = torch.where(is_zero_expanded, empty_visual_feat, video_hidden)
return video_hidden, torch.ones(video_hidden.shape[0], 1).to(device)
class T5Conditioner(Conditioner):
T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
"google/flan-t5-xl", "google/flan-t5-xxl"]
T5_MODEL_DIMS = {
"t5-small": 512,
"t5-base": 768,
"t5-large": 1024,
"t5-3b": 1024,
"t5-11b": 1024,
"t5-xl": 2048,
"t5-xxl": 4096,
"google/flan-t5-small": 512,
"google/flan-t5-base": 768,
"google/flan-t5-large": 1024,
"google/flan-t5-3b": 1024,
"google/flan-t5-11b": 1024,
"google/flan-t5-xl": 2048,
"google/flan-t5-xxl": 4096,
}
def __init__(
self,
output_dim: int,
t5_model_name: str = "t5-base",
max_length: str = 128,
enable_grad: bool = False,
project_out: bool = False,
):
assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}"
super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out)
from transformers import T5EncoderModel, AutoTokenizer
self.max_length = max_length
self.enable_grad = enable_grad
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.tokenizer = AutoTokenizer.from_pretrained(t5_model_name)
model = T5EncoderModel.from_pretrained(t5_model_name).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
finally:
logging.disable(previous_level)
if self.enable_grad:
self.model = model
else:
self.__dict__["model"] = model
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.model.to(device)
self.proj_out.to(device)
encoded = self.tokenizer(
texts,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
self.model.eval()
with torch.cuda.amp.autocast(dtype=torch.float16), torch.set_grad_enabled(self.enable_grad):
embeddings = self.model(
input_ids=input_ids, attention_mask=attention_mask
)["last_hidden_state"]
embeddings = self.proj_out(embeddings.float())
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, attention_mask
class PhonemeConditioner(Conditioner):
"""
A conditioner that turns text into phonemes and embeds them using a lookup table
Only works for English text
Args:
output_dim: the dimension of the output embeddings
max_length: the maximum number of phonemes to embed
project_out: whether to add another linear projection to the output embeddings
"""
def __init__(
self,
output_dim: int,
max_length: int = 1024,
project_out: bool = False,
):
super().__init__(output_dim, output_dim, project_out=project_out)
from g2p_en import G2p
self.max_length = max_length
self.g2p = G2p()
# Reserving 0 for padding, 1 for ignored
self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim)
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.phoneme_embedder.to(device)
self.proj_out.to(device)
batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length]
phoneme_ignore = [" ", *string.punctuation]
# Remove ignored phonemes and cut to max length
batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes]
# Convert to ids
phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes]
#Pad to match longest and make a mask tensor for the padding
longest = max([len(ids) for ids in phoneme_ids])
phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids]
phoneme_ids = torch.tensor(phoneme_ids).to(device)
# Convert to embeddings
phoneme_embeds = self.phoneme_embedder(phoneme_ids)
phoneme_embeds = self.proj_out(phoneme_embeds)
return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device)
class TokenizerLUTConditioner(Conditioner):
"""
A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary
Args:
tokenizer_name: the name of the tokenizer from the Hugging Face transformers library
output_dim: the dimension of the output embeddings
max_length: the maximum length of the text to embed
project_out: whether to add another linear projection to the output embeddings
"""
def __init__(
self,
tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library
output_dim: int,
max_length: int = 1024,
project_out: bool = False,
):
super().__init__(output_dim, output_dim, project_out=project_out)
from transformers import AutoTokenizer
# Suppress logging from transformers
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
finally:
logging.disable(previous_level)
self.max_length = max_length
self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim)
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.proj_out.to(device)
encoded = self.tokenizer(
texts,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
embeddings = self.token_embedder(input_ids)
embeddings = self.proj_out(embeddings)
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
return embeddings, attention_mask
class PretransformConditioner(Conditioner):
"""
A conditioner that uses a pretransform's encoder for conditioning
Args:
pretransform: an instantiated pretransform to use for conditioning
output_dim: the dimension of the output embeddings
"""
def __init__(self, pretransform: Pretransform, output_dim: int):
super().__init__(pretransform.encoded_channels, output_dim)
self.pretransform = pretransform
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.pretransform.to(device)
self.proj_out.to(device)
if isinstance(audio, list) or isinstance(audio, tuple):
audio = torch.cat(audio, dim=0)
# Convert audio to pretransform input channels
audio = set_audio_channels(audio, self.pretransform.io_channels)
latents = self.pretransform.encode(audio)
latents = self.proj_out(latents)
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]
class AudioAutoencoderConditioner(Conditioner):
"""
A conditioner that uses a pretransform's encoder for conditioning
Args:
pretransform: an instantiated pretransform to use for conditioning
output_dim: the dimension of the output embeddings
"""
def __init__(self, pretransform: Pretransform, output_dim: int):
super().__init__(pretransform.encoded_channels, output_dim)
self.pretransform = pretransform
self.empty_audio_feat = nn.Parameter(torch.zeros(1, 215, self.proj_out.out_features), requires_grad=True)
nn.init.constant_(self.empty_audio_feat, 0)
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
self.pretransform.to(device)
self.proj_out.to(device)
if isinstance(audio, list) or isinstance(audio, tuple):
original_audios = torch.cat(audio, dim=0).to(device)
is_zero = torch.all(original_audios == 0, dim=(1,2))
audio = original_audios
# Convert audio to pretransform input channels
audio = set_audio_channels(audio, self.pretransform.io_channels)
latents = self.pretransform.encode(audio)
latents = latents.permute(0, 2, 1)
latents = self.proj_out(latents)
empty_audio_feat = self.empty_audio_feat.expand(latents.shape[0], -1, -1)
is_zero_expanded = is_zero.view(latents.shape[0], 1, 1)
latents = torch.where(is_zero_expanded, empty_audio_feat, latents)
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]
class MultiConditioner(nn.Module):
"""
A module that applies multiple conditioners to an input dictionary based on the keys
Args:
conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt")
default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"})
"""
def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}):
super().__init__()
self.conditioners = nn.ModuleDict(conditioners)
self.default_keys = default_keys
def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]:
output = {}
for key, conditioner in self.conditioners.items():
condition_key = key
conditioner_inputs = []
for x in batch_metadata:
if condition_key not in x:
if condition_key in self.default_keys:
condition_key = self.default_keys[condition_key]
else:
raise ValueError(f"Conditioner key {condition_key} not found in batch metadata")
if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1:
conditioner_input = x[condition_key][0]
else:
conditioner_input = x[condition_key]
conditioner_inputs.append(conditioner_input)
output[key] = conditioner(conditioner_inputs, device)
return output
def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner:
"""
Create a MultiConditioner from a conditioning config dictionary
Args:
config: the conditioning config dictionary
device: the device to put the conditioners on
"""
conditioners = {}
cond_dim = config["cond_dim"]
default_keys = config.get("default_keys", {})
for conditioner_info in config["configs"]:
id = conditioner_info["id"]
conditioner_type = conditioner_info["type"]
conditioner_config = {"output_dim": cond_dim}
conditioner_config.update(conditioner_info["config"])
if conditioner_type == "t5":
conditioners[id] = T5Conditioner(**conditioner_config)
elif conditioner_type == "clip":
conditioners[id] = CLIPConditioner(**conditioner_config)
elif conditioner_type == "clap_text":
conditioners[id] = CLAPTextConditioner(**conditioner_config)
elif conditioner_type == "clap_audio":
conditioners[id] = CLAPAudioConditioner(**conditioner_config)
elif conditioner_type == "int":
conditioners[id] = IntConditioner(**conditioner_config)
elif conditioner_type == "number":
conditioners[id] = NumberConditioner(**conditioner_config)
elif conditioner_type == "phoneme":
conditioners[id] = PhonemeConditioner(**conditioner_config)
elif conditioner_type == "lut":
conditioners[id] = TokenizerLUTConditioner(**conditioner_config)
elif conditioner_type == "pretransform":
sample_rate = conditioner_config.pop("sample_rate", None)
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)
if conditioner_config.get("pretransform_ckpt_path", None) is not None:
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))
conditioners[id] = PretransformConditioner(pretransform, **conditioner_config)
elif conditioner_type == "audio_autoencoder":
sample_rate = conditioner_config.pop("sample_rate", None)
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)
if conditioner_config.get("pretransform_ckpt_path", None) is not None:
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))
conditioners[id] = AudioAutoencoderConditioner(pretransform, **conditioner_config)
else:
raise ValueError(f"Unknown conditioner type: {conditioner_type}")
return MultiConditioner(conditioners, default_keys=default_keys) |