Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,785 Bytes
8ab1cf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import gc
import platform
import os
import subprocess as sp
import gradio as gr
import json
import torch
import torchaudio
from aeiou.viz import audio_spectrogram_image
from einops import rearrange
from safetensors.torch import load_file
from torch.nn import functional as F
from torchaudio import transforms as T
from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from ..models.factory import create_model_from_config
from ..models.pretrained import get_pretrained_model
from ..models.utils import load_ckpt_state_dict
from ..inference.utils import prepare_audio
from ..training.utils import copy_state_dict
from ..data.utils import read_video, merge_video_audio
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
device = torch.device("cpu")
os.environ['TMPDIR'] = './tmp'
current_model_name = None
current_model = None
current_sample_rate = None
current_sample_size = None
def load_model(model_name, model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
global model_configurations
if pretrained_name is not None:
print(f"Loading pretrained model {pretrained_name}")
model, model_config = get_pretrained_model(pretrained_name)
elif model_config is not None and model_ckpt_path is not None:
print(f"Creating model from config")
model = create_model_from_config(model_config)
print(f"Loading model checkpoint from {model_ckpt_path}")
copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
if pretransform_ckpt_path is not None:
print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
print(f"Done loading pretransform")
model.to(device).eval().requires_grad_(False)
if model_half:
model.to(torch.float16)
print(f"Done loading model")
return model, model_config, sample_rate, sample_size
def load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total):
if audio_path is None:
return torch.zeros((2, int(sample_rate * seconds_total)))
audio_tensor, sr = torchaudio.load(audio_path)
start_index = int(sample_rate * seconds_start)
target_length = int(sample_rate * seconds_total)
end_index = start_index + target_length
audio_tensor = audio_tensor[:, start_index:end_index]
if audio_tensor.shape[1] < target_length:
pad_length = target_length - audio_tensor.shape[1]
audio_tensor = F.pad(audio_tensor, (pad_length, 0))
return audio_tensor
def generate_cond(
prompt,
negative_prompt=None,
video_file=None,
video_path=None,
audio_prompt_file=None,
audio_prompt_path=None,
seconds_start=0,
seconds_total=10,
cfg_scale=6.0,
steps=250,
preview_every=None,
seed=-1,
sampler_type="dpmpp-3m-sde",
sigma_min=0.03,
sigma_max=1000,
cfg_rescale=0.0,
use_init=False,
init_audio=None,
init_noise_level=1.0,
mask_cropfrom=None,
mask_pastefrom=None,
mask_pasteto=None,
mask_maskstart=None,
mask_maskend=None,
mask_softnessL=None,
mask_softnessR=None,
mask_marination=None,
batch_size=1
):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print(f"Prompt: {prompt}")
preview_images = []
if preview_every == 0:
preview_every = None
try:
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
except Exception:
has_mps = False
if has_mps:
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_name = 'default'
cfg = model_configurations[model_name]
model_config_path = cfg.get("model_config")
ckpt_path = cfg.get("ckpt_path")
pretrained_name = cfg.get("pretrained_name")
pretransform_ckpt_path = cfg.get("pretransform_ckpt_path")
model_type = cfg.get("model_type", "diffusion_cond")
if model_config_path:
with open(model_config_path) as f:
model_config = json.load(f)
else:
model_config = None
target_fps = model_config.get("video_fps", 5)
global current_model_name, current_model, current_sample_rate, current_sample_size
if current_model is None or model_name != current_model_name:
current_model, model_config, sample_rate, sample_size = load_model(
model_name=model_name,
model_config=model_config,
model_ckpt_path=ckpt_path,
pretrained_name=pretrained_name,
pretransform_ckpt_path=pretransform_ckpt_path,
device=device,
model_half=False
)
current_model_name = model_name
model = current_model
current_sample_rate = sample_rate
current_sample_size = sample_size
else:
model = current_model
sample_rate = current_sample_rate
sample_size = current_sample_size
if video_file is not None:
video_path = video_file.name
elif video_path:
video_path = video_path.strip()
else:
video_path = None
if audio_prompt_file is not None:
print(f'audio_prompt_file: {audio_prompt_file}')
audio_path = audio_prompt_file.name
elif audio_prompt_path:
audio_path = audio_prompt_path.strip()
else:
audio_path = None
Video_tensors = read_video(video_path, seek_time=seconds_start, duration=seconds_total, target_fps=target_fps)
audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total)
audio_tensor = audio_tensor.to(device)
seconds_input = sample_size / sample_rate
print(f'video_path: {video_path}')
if not prompt:
prompt = ""
conditioning = [{
"video_prompt": [Video_tensors.unsqueeze(0)],
"text_prompt": prompt,
"audio_prompt": audio_tensor.unsqueeze(0),
"seconds_start": seconds_start,
"seconds_total": seconds_input
}] * batch_size
if negative_prompt:
negative_conditioning = [{
"video_prompt": [Video_tensors.unsqueeze(0)],
"text_prompt": negative_prompt,
"audio_prompt": audio_tensor.unsqueeze(0),
"seconds_start": seconds_start,
"seconds_total": seconds_total
}] * batch_size
else:
negative_conditioning = None
try:
device = next(model.parameters()).device
except Exception as e:
device = next(current_model.parameters()).device
seed = int(seed)
if not use_init:
init_audio = None
input_sample_size = sample_size
if init_audio is not None:
in_sr, init_audio = init_audio
init_audio = torch.from_numpy(init_audio).float().div(32767)
if init_audio.dim() == 1:
init_audio = init_audio.unsqueeze(0)
elif init_audio.dim() == 2:
init_audio = init_audio.transpose(0, 1)
if in_sr != sample_rate:
resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
init_audio = resample_tf(init_audio)
audio_length = init_audio.shape[-1]
if audio_length > sample_size:
input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
init_audio = (sample_rate, init_audio)
def progress_callback(callback_info):
nonlocal preview_images
denoised = callback_info["denoised"]
current_step = callback_info["i"]
sigma = callback_info["sigma"]
if (current_step - 1) % preview_every == 0:
if model.pretransform is not None:
denoised = model.pretransform.decode(denoised)
denoised = rearrange(denoised, "b d n -> d (b n)")
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
if mask_cropfrom is not None:
mask_args = {
"cropfrom": mask_cropfrom,
"pastefrom": mask_pastefrom,
"pasteto": mask_pasteto,
"maskstart": mask_maskstart,
"maskend": mask_maskend,
"softnessL": mask_softnessL,
"softnessR": mask_softnessR,
"marination": mask_marination,
}
else:
mask_args = None
if model_type == "diffusion_cond":
audio = generate_diffusion_cond(
model,
conditioning=conditioning,
negative_conditioning=negative_conditioning,
steps=steps,
cfg_scale=cfg_scale,
batch_size=batch_size,
sample_size=input_sample_size,
sample_rate=sample_rate,
seed=seed,
device=device,
sampler_type=sampler_type,
sigma_min=sigma_min,
sigma_max=sigma_max,
init_audio=init_audio,
init_noise_level=init_noise_level,
mask_args=mask_args,
callback=progress_callback if preview_every is not None else None,
scale_phi=cfg_rescale
)
elif model_type == "diffusion_uncond":
audio = generate_diffusion_uncond(
model,
steps=steps,
batch_size=batch_size,
sample_size=input_sample_size,
seed=seed,
device=device,
sampler_type=sampler_type,
sigma_min=sigma_min,
sigma_max=sigma_max,
init_audio=init_audio,
init_noise_level=init_noise_level,
callback=progress_callback if preview_every is not None else None
)
else:
raise ValueError(f"Unsupported model type: {model_type}")
audio = rearrange(audio, "b d n -> d (b n)")
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
file_name = os.path.basename(video_path) if video_path else "output"
output_dir = f"demo_result"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_video_path = f"{output_dir}/{file_name}"
torchaudio.save(f"{output_dir}/output.wav", audio, sample_rate)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if video_path:
merge_video_audio(video_path, f"{output_dir}/output.wav", output_video_path, seconds_start, seconds_total)
audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
del video_path
torch.cuda.empty_cache()
gc.collect()
return (output_video_path, f"{output_dir}/output.wav")
def toggle_custom_model(selected_model):
return gr.Row.update(visible=(selected_model == "Custom Model"))
def create_sampling_ui(model_config_map, inpainting=False):
with gr.Blocks() as demo:
gr.Markdown(
"""
# 🎧AudioX: Diffusion Transformer for Anything-to-Audio Generation
**[Project Page](https://zeyuet.github.io/AudioX/) · [Huggingface](https://huggingface.co/Zeyue7/AudioX) · [GitHub](https://github.com/ZeyueT/AudioX)**
"""
)
with gr.Tab("Generation"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(show_label=False, placeholder="Enter your prompt")
negative_prompt = gr.Textbox(show_label=False, placeholder="Negative prompt", visible=False)
video_path = gr.Textbox(label="Video Path", placeholder="Enter video file path")
video_file = gr.File(label="Upload Video File")
audio_prompt_file = gr.File(label="Upload Audio Prompt File", visible=False)
audio_prompt_path = gr.Textbox(label="Audio Prompt Path", placeholder="Enter audio file path", visible=False)
with gr.Row():
with gr.Column(scale=6):
with gr.Accordion("Video Params", open=False):
seconds_start_slider = gr.Slider(minimum=0, maximum=512, step=1, value=0, label="Video Seconds Start")
seconds_total_slider = gr.Slider(minimum=0, maximum=10, step=1, value=10, label="Seconds Total", interactive=False)
with gr.Row():
with gr.Column(scale=4):
with gr.Accordion("Sampler Params", open=False):
steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")
preview_every_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Preview Every")
cfg_scale_slider = gr.Slider(minimum=0.0, maximum=25.0, step=0.1, value=7.0, label="CFG Scale")
seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1")
sampler_type_dropdown = gr.Dropdown(
["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"],
label="Sampler Type",
value="dpmpp-3m-sde"
)
sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma Min")
sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma Max")
cfg_rescale_slider = gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.0, label="CFG Rescale Amount")
with gr.Row():
with gr.Column(scale=4):
with gr.Accordion("Init Audio", open=False, visible=False):
init_audio_checkbox = gr.Checkbox(label="Use Init Audio")
init_audio_input = gr.Audio(label="Init Audio")
init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.01, value=0.1, label="Init Noise Level")
gr.Markdown("## Examples")
with gr.Accordion("Click to show examples", open=False):
with gr.Row():
gr.Markdown("**📝 Task: Text-to-Audio**")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Typing on a keyboard*")
ex1 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Ocean waves crashing*")
ex2 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Footsteps in snow*")
ex3 = gr.Button("Load Example")
with gr.Row():
gr.Markdown("**🎶 Task: Text-to-Music**")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *An orchestral music piece for a fantasy world.*")
ex4 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Produce upbeat electronic music for a dance party*")
ex5 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *A dreamy lo-fi beat with vinyl crackle*")
ex6 = gr.Button("Load Example")
with gr.Row():
gr.Markdown("**🎬 Task: Video-to-Audio**\nPrompt: *Generate general audio for the video*")
with gr.Column(scale=1.2):
gr.Video("example/V2A_sample-1.mp4")
ex7 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2A_sample-2.mp4")
ex8 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2A_sample-3.mp4")
ex9 = gr.Button("Load Example")
with gr.Row():
gr.Markdown("**🎵 Task: Video-to-Music**\nPrompt: *Generate music for the video*")
with gr.Column(scale=1.2):
gr.Video("example/V2M_sample-1.mp4")
ex10 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2M_sample-2.mp4")
ex11 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2M_sample-3.mp4")
ex12 = gr.Button("Load Example")
with gr.Row():
generate_button = gr.Button("Generate", variant='primary', scale=1)
with gr.Row():
with gr.Column(scale=6):
video_output = gr.Video(label="Output Video", interactive=False)
audio_output = gr.Audio(label="Output Audio", interactive=False)
send_to_init_button = gr.Button("Send to Init Audio", scale=1, visible=False)
send_to_init_button.click(
fn=lambda audio: audio,
inputs=[audio_output],
outputs=[init_audio_input]
)
inputs = [
prompt,
negative_prompt,
video_file,
video_path,
audio_prompt_file,
audio_prompt_path,
seconds_start_slider,
seconds_total_slider,
cfg_scale_slider,
steps_slider,
preview_every_slider,
seed_textbox,
sampler_type_dropdown,
sigma_min_slider,
sigma_max_slider,
cfg_rescale_slider,
init_audio_checkbox,
init_audio_input,
init_noise_level_slider
]
generate_button.click(
fn=generate_cond,
inputs=inputs,
outputs=[
video_output,
audio_output
],
api_name="generate"
)
ex1.click(lambda: ["Typing on a keyboard", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1225575558", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex2.click(lambda: ["Ocean waves crashing", None, None, None, None, None, 0, 10, 7.0, 100, 0, "3615819170", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex3.click(lambda: ["Footsteps in snow", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1703896811", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex4.click(lambda: ["An orchestral music piece for a fantasy world.", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1561898939", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex5.click(lambda: ["Produce upbeat electronic music for a dance party", None, None, None, None, None, 0, 10, 7.0, 100, 0, "406022999", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex6.click(lambda: ["A dreamy lo-fi beat with vinyl crackle", None, None, None, None, None, 0, 10, 7.0, 100, 0, "807934770", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex7.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-1.mp4", None, None, 0, 10, 7.0, 100, 0, "3737819478", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex8.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-2.mp4", None, None, 0, 10, 7.0, 100, 0, "1900718499", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex9.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-3.mp4", None, None, 0, 10, 7.0, 100, 0, "2289822202", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex10.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-1.mp4", None, None, 0, 10, 7.0, 100, 0, "3498087420", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex11.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-2.mp4", None, None, 0, 10, 7.0, 100, 0, "3753837734", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex12.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-3.mp4", None, None, 0, 10, 7.0, 100, 0, "3510832996", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
return demo
def create_txt2audio_ui(model_config_map):
with gr.Blocks(css=".gradio-container { max-width: 1120px; margin: auto; }") as ui:
with gr.Tab("Generation"):
create_sampling_ui(model_config_map)
return ui
def toggle_custom_model(selected_model):
return gr.Row.update(visible=(selected_model == "Custom Model"))
def create_ui(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False):
global model_configurations
global device
try:
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
except Exception:
has_mps = False
if has_mps:
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print("Using device:", device)
model_configurations = {
"default": {
"model_config": "./model/config.json",
"ckpt_path": "./model/model.ckpt"
}
}
ui = create_txt2audio_ui(model_configurations)
return ui
if __name__ == "__main__":
ui = create_ui(
model_config_path='./model/config.json',
share=True
)
ui.launch()
|