import gradio as gr from transformers import pipeline import pandas as pd # Load the dataset from datasets import load_dataset ds = load_dataset('ZennyKenny/demo_customer_nps') df = pd.DataFrame(ds['train']) # Initialize the model pipeline from huggingface_hub import login import os # Login using the API key stored as an environment variable hf_api_key = os.getenv("API_KEY") login(token=hf_api_key) pipe = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") # Function to classify customer comments @spaces.GPU def classify_comments(): results = [] for comment in df['customer_comment']: prompt = comment category = pipe(prompt)[0]['label'] results.append(category) df['comment_category'] = results return df[['customer_comment', 'comment_category']].to_html(index=False) # Gradio Interface with gr.Blocks() as nps: gr.Markdown("# NPS Comment Categorization") classify_btn = gr.Button("Classify Comments") output = gr.HTML() classify_btn.click(fn=classify_comments, outputs=output) nps.launch()