File size: 4,346 Bytes
cbcd78b
1ea874c
be195b7
 
4530b74
be195b7
 
 
 
cbcd78b
be195b7
 
 
1ea874c
be195b7
 
 
 
 
 
1ea874c
be195b7
ec6871c
67df231
962079a
3fac692
67df231
cbcd78b
67df231
0a5100e
67df231
 
9d03f28
3fac692
67df231
3fac692
 
67df231
3b076ac
cbcd78b
 
 
8d2cc8a
67df231
9d03f28
8d2cc8a
67df231
8d2cc8a
67df231
51f4bc0
511d4e8
8d2cc8a
ac13c62
 
511d4e8
8d2cc8a
9d32e7a
 
 
ac13c62
c00c984
80cfb3b
8d2cc8a
be195b7
 
 
67df231
8d2cc8a
1ea874c
 
be195b7
8d2cc8a
 
 
 
 
 
 
 
 
 
3b076ac
8d2cc8a
3b076ac
8d2cc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbcd78b
8d2cc8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
from transformers import pipeline
import pandas as pd
import spaces

# Load dataset
from datasets import load_dataset
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])

# Initialize model pipeline
from huggingface_hub import login
import os

# Login using the API key stored as an environment variable
hf_api_key = os.getenv("API_KEY")
login(token=hf_api_key)

classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
generator = pipeline("text2text-generation", model="google/flan-t5-base")

# Function to classify customer comments
@spaces.GPU
def classify_comments(categories):
    global df  # Ensure we're modifying the global DataFrame
    sentiments = []
    assigned_categories = []
    for comment in df['customer_comment']:
        # Classify sentiment
        sentiment = classifier(comment)[0]['label']
        # Generate category
        category_str = ', '.join(categories)
        prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}."
        category = generator(prompt, max_length=30)[0]['generated_text']
        assigned_categories.append(category)
        sentiments.append(sentiment)
    df['comment_sentiment'] = sentiments
    df['comment_category'] = assigned_categories
    return df.to_html(index=False)  # Return all fields with appended sentiment and category

# Gradio Interface
with gr.Blocks() as nps:
    # State to store categories
    categories = gr.State([])

    # Function to add a category
    def add_category(categories, new_category):
        if new_category.strip() != "" and len(categories) < 5:  # Limit to 5 categories
            categories.append(new_category.strip())
        return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories])

    # Function to reset categories
    def reset_categories():
        return [], "**Categories:**\n- None"

    # UI for adding categories
    with gr.Row():
        category_input = gr.Textbox(label="New Category", placeholder="Enter category name")
        add_category_btn = gr.Button("Add Category")
        reset_btn = gr.Button("Reset Categories")
        category_status = gr.Markdown("**Categories:**\n- None")

    # File upload and template buttons
    uploaded_file = gr.File(label="Upload CSV", type="filepath")
    template_btn = gr.Button("Use Template")
    gr.Markdown("# NPS Comment Categorization")

    # Classify button
    classify_btn = gr.Button("Classify Comments")
    output = gr.HTML()

    # Function to load data from uploaded CSV
    def load_data(file):
        global df  # Ensure we're modifying the global DataFrame
        if file is not None:
            file.seek(0)  # Reset file pointer
            if file.name.endswith('.csv'):
                custom_df = pd.read_csv(file, encoding='utf-8')
            else:
                return "Error: Uploaded file is not a CSV."
            # Check for required columns
            required_columns = ['customer_comment']
            if not all(col in custom_df.columns for col in required_columns):
                return f"Error: Uploaded CSV must contain the following column: {', '.join(required_columns)}"
            df = custom_df
            return "Custom CSV loaded successfully!"
        else:
            return "No file uploaded."

    # Function to use template categories
    def use_template():
        template_categories = ["Product Experience", "Customer Support", "Price of Service", "Other"]
        return template_categories, f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in template_categories])

    # Event handlers
    add_category_btn.click(
        fn=add_category,
        inputs=[categories, category_input],
        outputs=[categories, category_input, category_status]
    )
    reset_btn.click(
        fn=reset_categories,
        outputs=[categories, category_status]
    )
    uploaded_file.change(
        fn=load_data,
        inputs=uploaded_file,
        outputs=output
    )
    template_btn.click(
        fn=use_template,
        outputs=[categories, category_status]
    )
    classify_btn.click(
        fn=classify_comments,
        inputs=categories,
        outputs=output
    )

nps.launch(share=True)