AudioTranscribe / app.py
ZennyKenny's picture
Update app.py
9fe4dba verified
raw
history blame
1.39 kB
import gradio as gr
import torch
from transformers import pipeline
# Load models
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=0 if torch.cuda.is_available() else -1)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to process audio
def process_audio(audio_file):
# Step 1: Transcribe audio
transcription = transcriber(audio_file)["text"]
# Step 2: Summarize transcription
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary
# Gradio Interface with Horizontal Layout
with gr.Blocks() as interface:
with gr.Row():
# Upload button on the left
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
process_button = gr.Button("Process Audio")
# Output text box on the right
with gr.Column():
transcription_output = gr.Textbox(label="Full Transcription", lines=10)
summary_output = gr.Textbox(label="Summary", lines=5)
# Link the button to the function
process_button.click(
process_audio,
inputs=[audio_input],
outputs=[transcription_output, summary_output]
)
# Launch the interface with SSR disabled and optional public sharing
interface.launch