Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +38 -14
tasks/text.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
-
from fastapi import APIRouter
|
|
|
3 |
from datetime import datetime
|
4 |
from datasets import load_dataset
|
5 |
from sklearn.metrics import accuracy_score
|
@@ -9,12 +10,23 @@ import numpy as np
|
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
|
|
|
|
12 |
router = APIRouter()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
DESCRIPTION = "Efficient Climate Disinformation Detection"
|
15 |
ROUTE = "/text"
|
16 |
|
17 |
-
@router.post(
|
18 |
async def evaluate_text(request: TextEvaluationRequest):
|
19 |
"""
|
20 |
Evaluate text classification for climate disinformation detection.
|
@@ -46,21 +58,21 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
46 |
|
47 |
try:
|
48 |
# Model configuration
|
49 |
-
model_name = "distilbert-base-uncased"
|
50 |
-
BATCH_SIZE = 64
|
51 |
-
MAX_LENGTH = 128
|
52 |
|
53 |
# Initialize tokenizer and model
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
model = AutoModelForSequenceClassification.from_pretrained(
|
56 |
model_name,
|
57 |
num_labels=8,
|
58 |
-
problem_type="single_label_classification"
|
59 |
)
|
60 |
|
61 |
-
# Enable mixed precision
|
62 |
if torch.cuda.is_available():
|
63 |
-
model = model.half()
|
64 |
|
65 |
# Move model to device
|
66 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -71,14 +83,14 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
71 |
test_texts = test_dataset["quote"]
|
72 |
predictions = []
|
73 |
|
74 |
-
# Process in
|
75 |
for i in range(0, len(test_texts), BATCH_SIZE):
|
76 |
if torch.cuda.is_available():
|
77 |
torch.cuda.empty_cache()
|
78 |
|
79 |
batch_texts = test_texts[i:i + BATCH_SIZE]
|
80 |
|
81 |
-
#
|
82 |
inputs = tokenizer(
|
83 |
batch_texts,
|
84 |
padding=True,
|
@@ -87,18 +99,22 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
87 |
return_tensors="pt"
|
88 |
)
|
89 |
|
90 |
-
# Move inputs to device
|
91 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
92 |
|
93 |
-
#
|
94 |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
95 |
outputs = model(**inputs)
|
96 |
batch_preds = torch.argmax(outputs.logits, dim=1)
|
97 |
predictions.extend(batch_preds.cpu().numpy())
|
98 |
|
99 |
-
# Get true labels
|
100 |
true_labels = test_dataset['label']
|
|
|
|
|
101 |
emissions_data = tracker.stop_task()
|
|
|
|
|
102 |
accuracy = accuracy_score(true_labels, predictions)
|
103 |
|
104 |
# Prepare results
|
@@ -123,4 +139,12 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
123 |
|
124 |
except Exception as e:
|
125 |
tracker.stop_task()
|
126 |
-
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
from fastapi import FastAPI, APIRouter
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from datetime import datetime
|
5 |
from datasets import load_dataset
|
6 |
from sklearn.metrics import accuracy_score
|
|
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
12 |
|
13 |
+
# Initialize FastAPI app and router
|
14 |
+
app = FastAPI()
|
15 |
router = APIRouter()
|
16 |
|
17 |
+
# Add CORS middleware
|
18 |
+
app.add_middleware(
|
19 |
+
CORSMiddleware,
|
20 |
+
allow_origins=["*"],
|
21 |
+
allow_credentials=True,
|
22 |
+
allow_methods=["*"],
|
23 |
+
allow_headers=["*"],
|
24 |
+
)
|
25 |
+
|
26 |
DESCRIPTION = "Efficient Climate Disinformation Detection"
|
27 |
ROUTE = "/text"
|
28 |
|
29 |
+
@router.post("/text", tags=["Text Task"], description=DESCRIPTION)
|
30 |
async def evaluate_text(request: TextEvaluationRequest):
|
31 |
"""
|
32 |
Evaluate text classification for climate disinformation detection.
|
|
|
58 |
|
59 |
try:
|
60 |
# Model configuration
|
61 |
+
model_name = "distilbert-base-uncased"
|
62 |
+
BATCH_SIZE = 64
|
63 |
+
MAX_LENGTH = 128
|
64 |
|
65 |
# Initialize tokenizer and model
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
model = AutoModelForSequenceClassification.from_pretrained(
|
68 |
model_name,
|
69 |
num_labels=8,
|
70 |
+
problem_type="single_label_classification"
|
71 |
)
|
72 |
|
73 |
+
# Enable mixed precision if available
|
74 |
if torch.cuda.is_available():
|
75 |
+
model = model.half()
|
76 |
|
77 |
# Move model to device
|
78 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
83 |
test_texts = test_dataset["quote"]
|
84 |
predictions = []
|
85 |
|
86 |
+
# Process in batches
|
87 |
for i in range(0, len(test_texts), BATCH_SIZE):
|
88 |
if torch.cuda.is_available():
|
89 |
torch.cuda.empty_cache()
|
90 |
|
91 |
batch_texts = test_texts[i:i + BATCH_SIZE]
|
92 |
|
93 |
+
# Tokenize batch
|
94 |
inputs = tokenizer(
|
95 |
batch_texts,
|
96 |
padding=True,
|
|
|
99 |
return_tensors="pt"
|
100 |
)
|
101 |
|
102 |
+
# Move inputs to device
|
103 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
104 |
|
105 |
+
# Run inference
|
106 |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
107 |
outputs = model(**inputs)
|
108 |
batch_preds = torch.argmax(outputs.logits, dim=1)
|
109 |
predictions.extend(batch_preds.cpu().numpy())
|
110 |
|
111 |
+
# Get true labels
|
112 |
true_labels = test_dataset['label']
|
113 |
+
|
114 |
+
# Stop tracking emissions
|
115 |
emissions_data = tracker.stop_task()
|
116 |
+
|
117 |
+
# Calculate accuracy
|
118 |
accuracy = accuracy_score(true_labels, predictions)
|
119 |
|
120 |
# Prepare results
|
|
|
139 |
|
140 |
except Exception as e:
|
141 |
tracker.stop_task()
|
142 |
+
raise e
|
143 |
+
|
144 |
+
# Include the router
|
145 |
+
app.include_router(router)
|
146 |
+
|
147 |
+
# Add a health check endpoint
|
148 |
+
@app.get("/health")
|
149 |
+
async def health_check():
|
150 |
+
return {"status": "healthy"}
|