File size: 6,395 Bytes
b8dd64c f317969 b8dd64c f317969 b8dd64c 40122e5 158959c f317969 b8dd64c f317969 b8dd64c f317969 b8dd64c 158959c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import pandas as pd
from constants import *
# ... 其他导入 ...
# 定义自定义 CSS
custom_css = """
h1 { /* 根据需要选择正确的标题标签 */
background-color: blue; /* 蓝色背景 */
color: white; /* 白色文字 */
padding: 10px; /* 内边距 */
text-align: center; /* 文本居中 */
}
h2 { /* 根据需要选择正确的标题标签 */
color: black; /* 黑色文字 */
padding: 10px; /* 内边距 */
text-align: center; /* 文本居中 */
}
"""
def get_preview_data():
df = pd.read_json(DATA_DIR)
df=df.head(4)
return df
def get_result_data():
df={
"DataSet": ["WikiData_recent", "WikiData_recent", "WikiData_recent", "WikiData_recent",
"ZsRE", "ZsRE", "ZsRE", "ZsRE",
"WikiBio", "WikiBio", "WikiBio",
"WikiData_counterfact", "WikiData_counterfact", "WikiData_counterfact", "WikiData_counterfact",
"ConvSent", "ConvSent", "ConvSent",
"Sanitation", "Sanitation", "Sanitation"],
"Metric": ["Edit Succ. ↑", "Portability ↑", "Locality ↑", "Fluency ↑",
"Edit Succ. ↑", "Portability ↑", "Locality ↑", "Fluency ↑",
"Edit Succ. ↑", "Locality ↑", "Fluency ↑",
"Edit Succ. ↑", "Portability ↑", "Locality ↑", "Fluency ↑",
"Edit Succ. ↑", "Locality ↓", "Fluency ↑",
"Edit Succ. ↑", "Locality ↑", "Fluency ↑"],
"SERAC": [98.68, 63.52, 100.00, 553.19,
99.67, 56.48, 30.23, 410.89,
99.69, 69.79, 606.95,
99.99, 76.07, 98.96, 549.91,
62.75, 0.26, 458.21,
0.00, 100.00, 416.29],
"ICE": [60.74, 36.93, 33.34, 531.01,
66.01, 63.94, 23.14, 541.14,
95.53, 47.90, 632.92,
69.83, 45.32, 32.38, 547.22,
52.78, 49.73, 621.45,
72.50, 56.58, 794.15],
"AdaLoRA": [65.61, 47.22, 55.78, 537.51,
69.86, 52.95, 72.21, 532.82,
97.02, 57.87, 615.86,
72.14, 55.17, 66.78, 553.85,
44.89, 0.18, 606.42,
2.50, 65.50, 330.44],
"MEND": [76.88, 50.11, 92.87, 586.34,
96.74, 60.41, 92.79, 524.33,
93.66, 69.51, 609.39,
78.82, 57.53, 94.16, 588.94,
50.76, 3.42, 379.43,
0.00, 5.29, 407.18],
"ROME": [85.08, 37.45, 66.2, 574.28,
96.57, 52.20, 27.14, 570.47,
95.05, 46.96, 617.25,
83.21, 38.69, 65.4, 578.84,
45.79, 0.00, 606.32,
85.00, 50.31, 465.12],
"MEMIT": [85.32, 37.94, 64.78, 566.66,
83.07, 51.43, 25.46, 559.72,
94.29, 51.56, 616.65,
83.41, 40.09, 63.68, 568.58,
44.75, 0.00, 602.62,
48.75, 67.47, 466.10],
"FT-L": [71.18, 48.71, 63.7, 549.35,
54.65, 45.02, 71.12, 474.18,
83.41, 40.09, 63.68, 568.58,
66.27, 60.14, 604.00,
51.12, 39.07, 62.51,
48.75, 67.47, 466.10]
}
df=pd.DataFrame(df)
return df
def get_struct_data():
df = {
"Datasets":["train","test"],
"ZsRE":["10,000","1230"],
"Wikirecent":["5700","1266"],
"Wikicounterfact":["1455","885"],
"WikiBio":["592","1392"]
}
df=pd.DataFrame(df)
return df
block = gr.Blocks(css=custom_css) # 应用自定义 CSS
with block:
gr.Markdown(TITLE)
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'>Click here to get dataset: <a href='https://huggingface.co/datasets/zjunlp/KnowEdit' style='text-decoration:none' target='_blank'>huggingface, </a> <a href='https://wisemodel.cn/datasets/pillow/KnowEdit' style='text-decoration:none' target='_blank'>wisemodel, <a href='https://modelscope.cn/datasets/pillowxi/KnowEdit' style='text-decoration:none' target='_blank'>modelscope</a></p>"
gr.Markdown(description)
gr.Markdown("## BACKGROUND")
gr.Markdown(
BACKGROUND
)
gr.Image('./img/demo.gif')
gr.Markdown("## DATA PREVIEW")
gr.Markdown(LEADERBORAD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 Data preview ", elem_id="ke-benchmark-tab-table", id=0):
# 创建数据帧组件
ke_data_component = gr.components.Dataframe(
value=get_preview_data(),
headers=DATA_COLUMN_NAMES,
type="pandas",
)
with gr.TabItem("🏅 Data Struct ", elem_id="ke-struct-tab-table", id=1):
# 创建数据帧组件
ke_data_component = gr.components.Dataframe(
value=get_struct_data(),
headers=STRUCT_COLUMN_NAMES,
type="pandas",
)
with gr.TabItem("📝 data schema", elem_id="about-benchmark-tab-table", id=4):
gr.Markdown(DATA_SCHEMA, elem_classes="markdown-text")
gr.Markdown("## EXPERIMENT RESULTS")
gr.Markdown("We list the results of current knowledge editing methods on Llama2-7b-chat in Table")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 result", elem_id="ke-benchmark-tab-table", id=0):
# 创建数据帧组件
ke_data_component = gr.components.Dataframe(
value=get_result_data(),
headers=RESULT_COLUMN_NAMES,
type="pandas",
)
# About tab
with gr.TabItem("📝 About", elem_id="about-benchmark-tab-table", id=4):
gr.Markdown("Results of existing knowledge edit methods on the constructed benchmark. The symbol indicates that higher numbers correspond to better performance, while ↓ denotes the opposite, with lower numbers indicating better performance. For WikiBio and Convsent, we do not test the portability as they are about specific topics. ", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
)
block.launch(share=True)
|