import pandas as pd import numpy as np import rectools as rt from rectools.models import PopularModel, UserKNNModel from rectools.dataset import Dataset from rectools.metrics import precision_at_k, recall_at_k, map_at_k from sklearn.model_selection import train_test_split # Пути к файлам DATA_PATH = "dataset/" TRAIN_FILE = DATA_PATH + "train.csv" TEST_FILE = DATA_PATH + "test.csv" SUBMISSION_FILE = "submission.csv" # Загрузка данных train_df = pd.read_csv(TRAIN_FILE) test_df = pd.read_csv(TEST_FILE) # Разделение данных на train/val train_data, val_data = train_test_split(train_df, test_size=0.2, random_state=42) # Создание датасета dataset = Dataset.construct(train_data, user_col="user_id", item_col="item_id", feedback_col="rating") val_dataset = Dataset.construct(val_data, user_col="user_id", item_col="item_id", feedback_col="rating") # Инициализация моделей pop_model = PopularModel() pop_model.fit(dataset) knn_model = UserKNNModel(K=10, similarity="cosine") knn_model.fit(dataset) # Функция предсказания рекомендаций def predict(model): user_ids = test_df["user_id"].unique() recommendations = model.recommend(user_ids, dataset, k=10) # Топ-10 рекомендаций return recommendations # Оценка моделей на валидации def evaluate_model(model): user_ids = val_data["user_id"].unique() recs = model.recommend(user_ids, dataset, k=10) precision = precision_at_k(val_dataset, recs, k=10) recall = recall_at_k(val_dataset, recs, k=10) map_score = map_at_k(val_dataset, recs, k=10) print(f"Precision@10: {precision:.4f}, Recall@10: {recall:.4f}, MAP@10: {map_score:.4f}") # Сохранение предсказаний в CSV def save_predictions(predictions, filename=SUBMISSION_FILE): predictions.to_csv(filename, index=False) print(f"Predictions saved to {filename}") # Запуск if __name__ == "__main__": print("Evaluating Popular Model...") evaluate_model(pop_model) print("Evaluating UserKNN Model...") evaluate_model(knn_model) print("Generating final predictions...") preds = predict(knn_model) # Используем UserKNN для финальных рекомендаций save_predictions(preds)