Spaces:
Running
Running
Upload recom.py
Browse filesRecSys (рекомендательные системы) - используй библиотеку surprise или ещё лучше Rectools (тип что мы в конце веги делали)
recom.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import rectools as rt
|
4 |
+
from rectools.models import PopularModel, UserKNNModel
|
5 |
+
from rectools.dataset import Dataset
|
6 |
+
from rectools.metrics import precision_at_k, recall_at_k, map_at_k
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
|
9 |
+
# Пути к файлам
|
10 |
+
DATA_PATH = "dataset/"
|
11 |
+
TRAIN_FILE = DATA_PATH + "train.csv"
|
12 |
+
TEST_FILE = DATA_PATH + "test.csv"
|
13 |
+
SUBMISSION_FILE = "submission.csv"
|
14 |
+
|
15 |
+
# Загрузка данных
|
16 |
+
train_df = pd.read_csv(TRAIN_FILE)
|
17 |
+
test_df = pd.read_csv(TEST_FILE)
|
18 |
+
|
19 |
+
# Разделение данных на train/val
|
20 |
+
train_data, val_data = train_test_split(train_df, test_size=0.2, random_state=42)
|
21 |
+
|
22 |
+
# Создание датасета
|
23 |
+
dataset = Dataset.construct(train_data, user_col="user_id", item_col="item_id", feedback_col="rating")
|
24 |
+
val_dataset = Dataset.construct(val_data, user_col="user_id", item_col="item_id", feedback_col="rating")
|
25 |
+
|
26 |
+
# Инициализация моделей
|
27 |
+
pop_model = PopularModel()
|
28 |
+
pop_model.fit(dataset)
|
29 |
+
|
30 |
+
knn_model = UserKNNModel(K=10, similarity="cosine")
|
31 |
+
knn_model.fit(dataset)
|
32 |
+
|
33 |
+
# Функция предсказания рекомендаций
|
34 |
+
def predict(model):
|
35 |
+
user_ids = test_df["user_id"].unique()
|
36 |
+
recommendations = model.recommend(user_ids, dataset, k=10) # Топ-10 рекомендаций
|
37 |
+
return recommendations
|
38 |
+
|
39 |
+
# Оценка моделей на валидации
|
40 |
+
def evaluate_model(model):
|
41 |
+
user_ids = val_data["user_id"].unique()
|
42 |
+
recs = model.recommend(user_ids, dataset, k=10)
|
43 |
+
precision = precision_at_k(val_dataset, recs, k=10)
|
44 |
+
recall = recall_at_k(val_dataset, recs, k=10)
|
45 |
+
map_score = map_at_k(val_dataset, recs, k=10)
|
46 |
+
print(f"Precision@10: {precision:.4f}, Recall@10: {recall:.4f}, MAP@10: {map_score:.4f}")
|
47 |
+
|
48 |
+
# Сохранение предсказаний в CSV
|
49 |
+
def save_predictions(predictions, filename=SUBMISSION_FILE):
|
50 |
+
predictions.to_csv(filename, index=False)
|
51 |
+
print(f"Predictions saved to {filename}")
|
52 |
+
|
53 |
+
# Запуск
|
54 |
+
if __name__ == "__main__":
|
55 |
+
print("Evaluating Popular Model...")
|
56 |
+
evaluate_model(pop_model)
|
57 |
+
|
58 |
+
print("Evaluating UserKNN Model...")
|
59 |
+
evaluate_model(knn_model)
|
60 |
+
|
61 |
+
print("Generating final predictions...")
|
62 |
+
preds = predict(knn_model) # Используем UserKNN для финальных рекомендаций
|
63 |
+
save_predictions(preds)
|