import streamlit as st from diffusers import DiffusionPipeline import torch from moviepy.editor import * import numpy as np import tempfile, os st.title("🚀 Text-to-Video (Zeroscope)") @st.cache_resource def load_model(): pipe = DiffusionPipeline.from_pretrained( "cerspense/zeroscope_v2_576w", torch_dtype=torch.float32 ) pipe.to("cpu") return pipe pipe = load_model() prompt = st.text_area("Enter prompt (short & descriptive):", max_chars=50) if st.button("Generate Video"): if prompt: with st.spinner("Generating... (may take a few mins on CPU)"): video_frames = pipe(prompt, num_frames=8, height=320, width=576).frames video_filename = tempfile.mktemp(".mp4") clips = [ImageClip(np.array(frame)).set_duration(0.3) for frame in video_frames] final_clip = concatenate_videoclips(clips, method="compose")