ZeeAI1's picture
Update app.py
00b387e verified
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
# βœ… Page config must be first
st.set_page_config(page_title="Grammar Fixer & Coach", layout="centered")
# Load grammar correction model
@st.cache_resource
def load_grammar_model():
model_name = "vennify/t5-base-grammar-correction"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
return tokenizer, model
# Load explanation model
@st.cache_resource
def load_explanation_model():
return pipeline("text2text-generation", model="google/flan-t5-large", max_length=512)
grammar_tokenizer, grammar_model = load_grammar_model()
explanation_model = load_explanation_model()
# Grammar correction function
def correct_grammar(text):
inputs = grammar_tokenizer.encode(text, return_tensors="pt", truncation=True)
outputs = grammar_model.generate(inputs, max_length=512, num_beams=4, early_stopping=True)
corrected = grammar_tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected
# Explanation function
def get_detailed_feedback(original, corrected):
prompt = (
f"Analyze and explain all grammar, spelling, and punctuation corrections made when changing the following sentence:\n\n"
f"Original: {original}\n"
f"Corrected: {corrected}\n\n"
f"Give a list of corrections with the reason for each, and also suggest how the user can improve their writing."
)
explanation = explanation_model(prompt)[0]['generated_text']
return explanation
# Streamlit UI
st.title("🧠 Grammar Fixer & Writing Coach")
st.write("Paste your sentence or paragraph. The AI will correct it and explain each fix to help you learn.")
user_input = st.text_area("✍️ Enter your text below:", height=200, placeholder="e.g., I, want you! to please foucs on you work only!!")
if st.button("Correct & Explain"):
if user_input.strip():
with st.spinner("Correcting grammar..."):
corrected = correct_grammar(user_input)
with st.spinner("Explaining corrections..."):
explanation = get_detailed_feedback(user_input, corrected)
st.subheader("βœ… Corrected Text")
st.success(corrected)
st.subheader("πŸ“˜ Detailed Explanation")
st.markdown(explanation)
else:
st.warning("Please enter some text.")