GramerTest01 / app.py
ZeeAI1's picture
Update app.py
c537159 verified
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
from spellchecker import SpellChecker
import re
import torch
# Load model and tokenizer
@st.cache_resource
def load_model():
model_name = "vennify/t5-base-grammar-correction"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
return tokenizer, model
tokenizer, model = load_model()
# Step 0: Preprocess the input
def preprocess_input(text):
# Remove special characters like '#' from the end
cleaned = re.sub(r'[^\w\s]$', '', text.strip())
# Ensure sentence ends with a period if not already
if not cleaned.endswith('.'):
cleaned += '.'
return cleaned
# Step 1: Spelling correction
def correct_spelling(text):
spell = SpellChecker()
words = re.findall(r'\b\w+\b|\S', text)
corrected_words = []
for word in words:
clean_word = re.sub(r'[^\w\s]', '', word)
if clean_word.isalpha():
corrected_word = spell.correction(clean_word.lower()) or clean_word
trailing = ''.join(re.findall(r'[^\w\s]', word))
corrected_words.append(corrected_word + trailing)
else:
corrected_words.append(word)
return ' '.join(corrected_words)
# Step 2: Grammar correction
def correct_grammar(text):
input_text = "gec: " + text
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True)
corrected = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected
# Streamlit UI
st.set_page_config(page_title="Grammar & Spelling Assistant", page_icon="🧠")
st.title("🧠 Grammar & Spelling Correction Assistant")
st.write("Fixes grammar and spelling errors without changing your original meaning.")
user_input = st.text_area("✍️ Enter your sentence:", height=150)
if st.button("Correct & Explain"):
if not user_input.strip():
st.warning("Please enter a sentence.")
else:
# Step 0: Preprocess
preprocessed = preprocess_input(user_input)
# Step 1: Spell check
spelling_fixed = correct_spelling(preprocessed)
# Step 2: Grammar correction
final_output = correct_grammar(spelling_fixed)
# Output
st.markdown("### βœ… Final Correction:")
st.success(final_output)
st.markdown("### πŸ” Explanation:")
st.info(f"""
**Original Sentence:**
{user_input}
**After Preprocessing (remove #, enforce period):**
{preprocessed}
**After Spelling Correction:**
{spelling_fixed}
**After Grammar Correction:**
{final_output}
**Explanation:**
- Special characters like `#` were removed
- Misspelled words like `ober` β†’ `over`, `dogz` β†’ `dogs` were fixed
- Grammar (capitalization, punctuation) was corrected
- No unwanted words like `#5` were added
""")