File size: 690 Bytes
f27d383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import os
st.title("AI Accountant - Prompt-Based ERP Entry")
model_path = os.path.abspath("finetuned-flan-t5")
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, local_files_only=True)
user_input = st.text_area("Enter accounting transaction:")
if st.button("Generate Entry"):
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.json(eval(result)) # Convert JSON string to dict
|