Create train_flan_t5.py
Browse files- train_flan_t5.py +47 -0
train_flan_t5.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqTrainer, Seq2SeqTrainingArguments
|
3 |
+
|
4 |
+
model_checkpoint = "google/flan-t5-large"
|
5 |
+
output_dir = "./finetuned-flan-t5"
|
6 |
+
|
7 |
+
# Load dataset
|
8 |
+
dataset = load_dataset("json", data_files={"train": "train_data.jsonl"})
|
9 |
+
|
10 |
+
# Tokenizer
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
12 |
+
|
13 |
+
def preprocess_function(examples):
|
14 |
+
inputs = examples["input"]
|
15 |
+
targets = examples["output"]
|
16 |
+
model_inputs = tokenizer(inputs, max_length=512, truncation=True)
|
17 |
+
labels = tokenizer(targets, max_length=128, truncation=True)
|
18 |
+
model_inputs["labels"] = labels["input_ids"]
|
19 |
+
return model_inputs
|
20 |
+
|
21 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
22 |
+
|
23 |
+
# Model
|
24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
25 |
+
|
26 |
+
# Training arguments
|
27 |
+
training_args = Seq2SeqTrainingArguments(
|
28 |
+
output_dir=output_dir,
|
29 |
+
evaluation_strategy="no",
|
30 |
+
learning_rate=5e-5,
|
31 |
+
per_device_train_batch_size=2,
|
32 |
+
num_train_epochs=3,
|
33 |
+
weight_decay=0.01,
|
34 |
+
save_total_limit=2,
|
35 |
+
push_to_hub=False
|
36 |
+
)
|
37 |
+
|
38 |
+
trainer = Seq2SeqTrainer(
|
39 |
+
model=model,
|
40 |
+
args=training_args,
|
41 |
+
train_dataset=tokenized_datasets["train"]
|
42 |
+
)
|
43 |
+
|
44 |
+
trainer.train()
|
45 |
+
|
46 |
+
model.save_pretrained(output_dir)
|
47 |
+
tokenizer.save_pretrained(output_dir)
|