Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Initialize LLM pipeline
|
6 |
+
parser = pipeline("text2text-generation", model="google/flan-t5-base")
|
7 |
+
|
8 |
+
# Simulated chart of accounts mapping
|
9 |
+
account_map = {
|
10 |
+
"rent": "60001",
|
11 |
+
"utilities": "60002",
|
12 |
+
"cash": "10001",
|
13 |
+
"bank": "10002"
|
14 |
+
}
|
15 |
+
|
16 |
+
# Simulated business segments
|
17 |
+
segment = {
|
18 |
+
"company": "01",
|
19 |
+
"business_type": "102", # Grocery Store
|
20 |
+
"location": "001",
|
21 |
+
"cost_center": "001",
|
22 |
+
"future": "000"
|
23 |
+
}
|
24 |
+
|
25 |
+
def parse_prompt(prompt):
|
26 |
+
result = parser(f"Extract accounting entry: {prompt}")[0]['generated_text']
|
27 |
+
return result # Simplified: in real app, use structured parsing
|
28 |
+
|
29 |
+
def handle_gl_entry(prompt):
|
30 |
+
# Simulate parsing response
|
31 |
+
if "rent" in prompt.lower():
|
32 |
+
account_name = "rent"
|
33 |
+
amount = 500 # Normally extracted from LLM
|
34 |
+
else:
|
35 |
+
account_name = "utilities"
|
36 |
+
amount = 300
|
37 |
+
|
38 |
+
expense_account = account_map[account_name]
|
39 |
+
cash_account = account_map["cash"]
|
40 |
+
|
41 |
+
expense_account_code = f"{segment['company']}-{segment['business_type']}-{segment['location']}-{segment['cost_center']}-{expense_account}-{segment['future']}"
|
42 |
+
cash_account_code = f"{segment['company']}-{segment['business_type']}-{segment['location']}-{segment['cost_center']}-{cash_account}-{segment['future']}"
|
43 |
+
|
44 |
+
entry = pd.DataFrame([
|
45 |
+
{
|
46 |
+
"Date": "2025-04-01",
|
47 |
+
"Description": f"{account_name.title()} Expense",
|
48 |
+
"Account Code": expense_account_code,
|
49 |
+
"Debit": amount,
|
50 |
+
"Credit": 0
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"Date": "2025-04-01",
|
54 |
+
"Description": f"Payment for {account_name}",
|
55 |
+
"Account Code": cash_account_code,
|
56 |
+
"Debit": 0,
|
57 |
+
"Credit": amount
|
58 |
+
}
|
59 |
+
])
|
60 |
+
return entry
|
61 |
+
|
62 |
+
# Streamlit UI
|
63 |
+
st.title("AI ERP Chat - MVP")
|
64 |
+
prompt = st.text_input("Enter your accounting instruction:")
|
65 |
+
|
66 |
+
if prompt:
|
67 |
+
result = handle_gl_entry(prompt)
|
68 |
+
st.dataframe(result) # Show result as a DataFrame
|