File size: 8,032 Bytes
2a778a6 c95c282 ecaceca 528146d 46ea492 6ce6beb 528146d ecaceca 710c7ab ecaceca 943c198 6ce6beb 2e87ddf 2a778a6 943c198 ecaceca 2a778a6 ecaceca 2a778a6 ecaceca 2e87ddf 2a778a6 6495c45 2e87ddf 710c7ab 2e87ddf 6495c45 2a778a6 46ea492 2a778a6 710c7ab 46ea492 710c7ab 2a778a6 6ce6beb 710c7ab 6ce6beb 2a778a6 6ce6beb 710c7ab 6b2d7b0 710c7ab 6b2d7b0 710c7ab 6b2d7b0 710c7ab 6b2d7b0 710c7ab 6b2d7b0 710c7ab bcfe461 ecaceca 710c7ab ecaceca 710c7ab ecaceca 710c7ab ecaceca 710c7ab ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 710c7ab ecaceca 710c7ab ecaceca 710c7ab ecaceca 2e87ddf 710c7ab ecaceca 2e87ddf ecaceca 2e87ddf 710c7ab ecaceca 2e87ddf ecaceca 710c7ab ecaceca 710c7ab ecaceca 2a778a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase
from sentiment_analysis import analyze_sentiment, transcribe_with_chunks
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
import queue
# Initialize components
objection_handler = ObjectionHandler("objections.csv") # Use relative path
product_recommender = ProductRecommender("recommendations.csv") # Use relative path
model = SentenceTransformer('all-MiniLM-L6-v2')
# Queue to hold transcribed text
transcription_queue = queue.Queue()
def generate_comprehensive_summary(chunks):
# Your existing function implementation
pass
def is_valid_input(text):
# Your existing function implementation
pass
def is_relevant_sentiment(sentiment_score):
# Your existing function implementation
pass
def calculate_overall_sentiment(sentiment_scores):
# Your existing function implementation
pass
def handle_objection(text):
query_embedding = model.encode([text])
distances, indices = objection_handler.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
responses = objection_handler.handle_objection(text)
return "\n".join(responses) if responses else "No objection response found."
return "No objection response found."
class AudioProcessor(AudioProcessorBase):
def __init__(self):
self.sr = 16000 # Sample rate
self.q = transcription_queue
def recv(self, frame):
audio_data = frame.to_ndarray()
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes() # Convert to int16 format
# Transcribe the audio
text = self.transcribe_audio(audio_bytes)
if text:
self.q.put(text) # Add transcribed text to the queue
return frame
def transcribe_audio(self, audio_bytes):
try:
# Use the transcribe_with_chunks function from sentiment_analysis.py
chunks = transcribe_with_chunks({}) # Pass an empty objections_dict for now
if chunks:
return chunks[-1][0] # Return the latest transcribed text
except Exception as e:
print(f"Error transcribing audio: {e}")
return None
def real_time_analysis():
st.info("Listening... Say 'stop' to end the process.")
# Start WebRTC audio stream
webrtc_ctx = webrtc_streamer(
key="real-time-audio",
mode=WebRtcMode.SENDONLY,
audio_processor_factory=AudioProcessor,
media_stream_constraints={"audio": True, "video": False},
)
# Display transcribed text from the queue
while not transcription_queue.empty():
text = transcription_queue.get()
st.write(f"*Recognized Text:* {text}")
# Analyze sentiment
sentiment, score = analyze_sentiment(text)
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
# Handle objection
objection_response = handle_objection(text)
st.write(f"*Objection Response:* {objection_response}")
# Get product recommendation
recommendations = []
if is_valid_input(text) and is_relevant_sentiment(score):
query_embedding = model.encode([text])
distances, indices = product_recommender.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Similarity threshold
recommendations = product_recommender.get_recommendations(text)
if recommendations:
st.write("*Product Recommendations:*")
for rec in recommendations:
st.write(rec)
def run_app():
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
st.title("AI Sales Call Assistant")
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
if app_mode == "Real-Time Call Analysis":
st.header("Real-Time Sales Call Analysis")
real_time_analysis()
elif app_mode == "Dashboard":
st.header("Call Summaries and Sentiment Analysis")
try:
data = fetch_call_data(config["google_sheet_id"])
if data.empty:
st.warning("No data available in the Google Sheet.")
else:
# Sentiment Visualizations
sentiment_counts = data['Sentiment'].value_counts()
# Pie Chart
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Distribution")
fig_pie = px.pie(
values=sentiment_counts.values,
names=sentiment_counts.index,
title='Call Sentiment Breakdown',
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_pie)
# Bar Chart
with col2:
st.subheader("Sentiment Counts")
fig_bar = px.bar(
x=sentiment_counts.index,
y=sentiment_counts.values,
title='Number of Calls by Sentiment',
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
color=sentiment_counts.index,
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_bar)
# Existing Call Details Section
st.subheader("All Calls")
display_data = data.copy()
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
# Dropdown to select Call ID
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
# Display selected Call ID details
call_details = data[data['Call ID'] == call_id]
if not call_details.empty:
st.subheader("Detailed Call Information")
st.write(f"**Call ID:** {call_id}")
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
# Expand summary section
st.subheader("Full Call Summary")
st.text_area("Summary:",
value=call_details.iloc[0]['Summary'],
height=200,
disabled=True)
# Show all chunks for the selected call
st.subheader("Conversation Chunks")
for _, row in call_details.iterrows():
if pd.notna(row['Chunk']):
st.write(f"**Chunk:** {row['Chunk']}")
st.write(f"**Sentiment:** {row['Sentiment']}")
st.write("---") # Separator between chunks
else:
st.error("No details available for the selected Call ID.")
except Exception as e:
st.error(f"Error loading dashboard: {e}")
if __name__ == "__main__":
run_app() |