File size: 6,949 Bytes
5126882 e089e5b 5126882 e089e5b 5126882 e089e5b 5126882 e089e5b 5126882 e089e5b 5126882 e089e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import json
import time
from speech_recognition import Recognizer, Microphone, AudioData, UnknownValueError, RequestError
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from huggingface_hub import login
from product_recommender import ProductRecommender
from objection_handler import load_objections, check_objections # Ensure check_objections is imported
from objection_handler import ObjectionHandler
from env_setup import config
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Hugging Face API setup
huggingface_api_key = config["huggingface_api_key"]
login(token=huggingface_api_key)
# Sentiment Analysis Model
model_name = "tabularisai/multilingual-sentiment-analysis"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# Speech Recognition Setup
recognizer = Recognizer()
# Function to analyze sentiment
def preprocess_text(text):
"""Preprocess text for better sentiment analysis."""
return text.strip().lower()
def analyze_sentiment(text):
"""Analyze sentiment of the text using Hugging Face model."""
try:
if not text.strip():
return "NEUTRAL", 0.0
processed_text = preprocess_text(text)
result = sentiment_analyzer(processed_text)[0]
print(f"Sentiment Analysis Result: {result}")
# Map raw labels to sentiments
sentiment_map = {
'Very Negative': "NEGATIVE",
'Negative': "NEGATIVE",
'Neutral': "NEUTRAL",
'Positive': "POSITIVE",
'Very Positive': "POSITIVE"
}
sentiment = sentiment_map.get(result['label'], "NEUTRAL")
return sentiment, result['score']
except Exception as e:
print(f"Error in sentiment analysis: {e}")
return "NEUTRAL", 0.5
def transcribe_with_chunks(objections_dict):
"""Perform real-time transcription with sentiment analysis."""
print("Say 'start listening' to begin transcription. Say 'stop listening' to stop.")
is_listening = False
chunks = []
current_chunk = []
chunk_start_time = time.time()
# Initialize handlers with semantic search capabilities
objection_handler = ObjectionHandler(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
# Load the embeddings model once
model = SentenceTransformer('all-MiniLM-L6-v2')
try:
with Microphone() as source:
recognizer.adjust_for_ambient_noise(source)
print("Microphone calibrated. Please speak.")
while True:
print("Listening for speech...")
try:
audio_data = recognizer.listen(source, timeout=5)
text = recognizer.recognize_google(audio_data)
if "start listening" in text.lower():
is_listening = True
print("Listening started. Speak into the microphone.")
continue
elif "stop listening" in text.lower():
is_listening = False
print("Listening stopped.")
if current_chunk:
chunk_text = " ".join(current_chunk)
sentiment, score = analyze_sentiment(chunk_text)
chunks.append((chunk_text, sentiment, score))
current_chunk = []
continue
if is_listening and text.strip():
print(f"Transcription: {text}")
current_chunk.append(text)
if time.time() - chunk_start_time > 3:
if current_chunk:
chunk_text = " ".join(current_chunk)
# Always process sentiment
sentiment, score = analyze_sentiment(chunk_text)
chunks.append((chunk_text, sentiment, score))
# Get objection responses and check similarity score
query_embedding = model.encode([chunk_text])
distances, indices = objection_handler.index.search(query_embedding, 1)
# If similarity is high enough, show objection response
if distances[0][0] < 1.5: # Threshold for similarity
responses = objection_handler.handle_objection(chunk_text)
if responses:
print("\nSuggested Response:")
for response in responses:
print(f"→ {response}")
# Get product recommendations and check similarity score
distances, indices = product_recommender.index.search(query_embedding, 1)
# If similarity is high enough, show recommendations
if distances[0][0] < 1.5: # Threshold for similarity
recommendations = product_recommender.get_recommendations(chunk_text)
if recommendations:
print(f"\nRecommendations for this response:")
for idx, rec in enumerate(recommendations, 1):
print(f"{idx}. {rec}")
print("\n")
current_chunk = []
chunk_start_time = time.time()
except UnknownValueError:
print("Could not understand the audio.")
except RequestError as e:
print(f"Could not request results from Google Speech Recognition service; {e}")
except KeyboardInterrupt:
print("\nExiting...")
return chunks
if __name__ == "__main__":
objections_file_path = r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv"
objections_dict = load_objections(objections_file_path)
transcribed_chunks = transcribe_with_chunks(objections_dict)
print("Final transcriptions and sentiments:", transcribed_chunks)
|