File size: 8,170 Bytes
2a778a6
c95c282
ecaceca
 
 
 
 
 
 
 
 
528146d
46ea492
6ce6beb
ef79036
528146d
ecaceca
710c7ab
 
ecaceca
943c198
6ce6beb
 
 
2e87ddf
2a778a6
 
943c198
ecaceca
2a778a6
 
ecaceca
 
2a778a6
 
ecaceca
2e87ddf
2a778a6
 
6495c45
2e87ddf
 
 
710c7ab
2e87ddf
 
 
6495c45
2a778a6
 
 
 
46ea492
2a778a6
 
 
ef79036
 
 
 
 
2a778a6
 
 
 
 
 
 
 
 
710c7ab
 
46ea492
710c7ab
2a778a6
 
 
6ce6beb
 
 
 
710c7ab
6ce6beb
 
 
2a778a6
6ce6beb
 
 
ef79036
 
 
 
 
 
 
 
 
6b2d7b0
ef79036
 
 
6b2d7b0
ef79036
 
 
 
 
6b2d7b0
ef79036
 
6b2d7b0
ef79036
 
 
 
6b2d7b0
ef79036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcfe461
ecaceca
 
 
 
 
 
 
 
 
710c7ab
ecaceca
 
ef79036
ecaceca
 
2a778a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase
from sentiment_analysis import analyze_sentiment, transcribe_with_chunks
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
import queue
import threading

# Initialize components
objection_handler = ObjectionHandler("objections.csv")  # Use relative path
product_recommender = ProductRecommender("recommendations.csv")  # Use relative path
model = SentenceTransformer('all-MiniLM-L6-v2')

# Queue to hold transcribed text
transcription_queue = queue.Queue()

def generate_comprehensive_summary(chunks):
    # Your existing function implementation
    pass

def is_valid_input(text):
    # Your existing function implementation
    pass

def is_relevant_sentiment(sentiment_score):
    # Your existing function implementation
    pass

def calculate_overall_sentiment(sentiment_scores):
    # Your existing function implementation
    pass

def handle_objection(text):
    query_embedding = model.encode([text])
    distances, indices = objection_handler.index.search(query_embedding, 1)
    if distances[0][0] < 1.5:  # Adjust similarity threshold as needed
        responses = objection_handler.handle_objection(text)
        return "\n".join(responses) if responses else "No objection response found."
    return "No objection response found."

class AudioProcessor(AudioProcessorBase):
    def __init__(self):
        self.sr = 16000  # Sample rate
        self.q = transcription_queue

    def recv(self, frame):
        audio_data = frame.to_ndarray()
        audio_bytes = (audio_data * 32767).astype(np.int16).tobytes()  # Convert to int16 format
        
        # Debugging: Check audio data
        print(f"Audio data shape: {audio_data.shape}")
        print(f"Audio data sample: {audio_data[:10]}")
        
        # Transcribe the audio
        text = self.transcribe_audio(audio_bytes)
        if text:
            self.q.put(text)  # Add transcribed text to the queue

        return frame

    def transcribe_audio(self, audio_bytes):
        try:
            # Use the transcribe_with_chunks function from sentiment_analysis.py
            chunks = transcribe_with_chunks({})  # Pass an empty objections_dict for now
            if chunks:
                return chunks[-1][0]  # Return the latest transcribed text
        except Exception as e:
            print(f"Error transcribing audio: {e}")
        return None

def real_time_analysis():
    st.info("Listening... Say 'stop' to end the process.")

    # Start WebRTC audio stream
    webrtc_ctx = webrtc_streamer(
        key="real-time-audio",
        mode=WebRtcMode.SENDONLY,
        audio_processor_factory=AudioProcessor,
        media_stream_constraints={"audio": True, "video": False},
    )

    if webrtc_ctx.state.playing:
        # Display transcribed text from the queue
        while not transcription_queue.empty():
            text = transcription_queue.get()
            st.write(f"*Recognized Text:* {text}")

            # Analyze sentiment
            sentiment, score = analyze_sentiment(text)
            st.write(f"*Sentiment:* {sentiment} (Score: {score})")

            # Handle objection
            objection_response = handle_objection(text)
            st.write(f"*Objection Response:* {objection_response}")

            # Get product recommendation
            recommendations = []
            if is_valid_input(text) and is_relevant_sentiment(score):
                query_embedding = model.encode([text])
                distances, indices = product_recommender.index.search(query_embedding, 1)

                if distances[0][0] < 1.5:  # Similarity threshold
                    recommendations = product_recommender.get_recommendations(text)

            if recommendations:
                st.write("*Product Recommendations:*")
                for rec in recommendations:
                    st.write(rec)

def fetch_data_and_display():
    try:
        st.header("Call Summaries and Sentiment Analysis")
        data = fetch_call_data(config["google_sheet_id"])
        
        # Debugging: Log fetched data
        print(f"Fetched data: {data}")
        
        if data.empty:
            st.warning("No data available in the Google Sheet.")
        else:
            # Sentiment Visualizations
            sentiment_counts = data['Sentiment'].value_counts()
            
            # Pie Chart
            col1, col2 = st.columns(2)
            with col1:
                st.subheader("Sentiment Distribution")
                fig_pie = px.pie(
                    values=sentiment_counts.values, 
                    names=sentiment_counts.index, 
                    title='Call Sentiment Breakdown',
                    color_discrete_map={
                        'POSITIVE': 'green', 
                        'NEGATIVE': 'red', 
                        'NEUTRAL': 'blue'
                    }
                )
                st.plotly_chart(fig_pie)

            # Bar Chart
            with col2:
                st.subheader("Sentiment Counts")
                fig_bar = px.bar(
                    x=sentiment_counts.index, 
                    y=sentiment_counts.values, 
                    title='Number of Calls by Sentiment',
                    labels={'x': 'Sentiment', 'y': 'Number of Calls'},
                    color=sentiment_counts.index,
                    color_discrete_map={
                        'POSITIVE': 'green', 
                        'NEGATIVE': 'red', 
                        'NEUTRAL': 'blue'
                    }
                )
                st.plotly_chart(fig_bar)

            # Existing Call Details Section
            st.subheader("All Calls")
            display_data = data.copy()
            display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
            st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])

            # Dropdown to select Call ID
            unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
            call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)

            # Display selected Call ID details
            call_details = data[data['Call ID'] == call_id]
            if not call_details.empty:
                st.subheader("Detailed Call Information")
                st.write(f"**Call ID:** {call_id}")
                st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")

                # Expand summary section
                st.subheader("Full Call Summary")
                st.text_area("Summary:", 
                             value=call_details.iloc[0]['Summary'], 
                             height=200, 
                             disabled=True)

                # Show all chunks for the selected call
                st.subheader("Conversation Chunks")
                for _, row in call_details.iterrows():
                    if pd.notna(row['Chunk']):  
                        st.write(f"**Chunk:** {row['Chunk']}")
                        st.write(f"**Sentiment:** {row['Sentiment']}")
                        st.write("---")  # Separator between chunks
            else:
                st.error("No details available for the selected Call ID.")
    except Exception as e:
        st.error(f"Error loading dashboard: {e}")

def run_app():
    st.set_page_config(page_title="Sales Call Assistant", layout="wide")
    st.title("AI Sales Call Assistant")

    st.sidebar.title("Navigation")
    app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])

    if app_mode == "Real-Time Call Analysis":
        st.header("Real-Time Sales Call Analysis")
        real_time_analysis()

    elif app_mode == "Dashboard":
        fetch_data_and_display()

if __name__ == "__main__":
    run_app()