Zack3D's picture
Update app.py
bc30d26 verified
raw
history blame
19 kB
from __future__ import annotations
import io
import os
from typing import List, Optional, Union, Dict, Any
import gradio as gr
import numpy as np
from PIL import Image
import openai
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]
def _client(key: str) -> openai.OpenAI:
"""Initializes the OpenAI client with the provided API key."""
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
if not api_key:
raise gr.Error("Please enter your OpenAI API key (never stored)")
return openai.OpenAI(api_key=api_key)
def _img_list(resp, *, fmt: str) -> List[str]:
"""Return list of data URLs or direct URLs depending on API response."""
mime = f"image/{fmt}"
# Ensure b64_json exists and is not None/empty before using it
return [
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
for d in resp.data
]
def _common_kwargs(
prompt: Optional[str],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
) -> Dict[str, Any]:
"""Prepare keyword arguments for Images API based on latest OpenAI spec."""
kwargs: Dict[str, Any] = dict(
model=MODEL,
n=n,
# REMOVED: response_format="b64_json", # This parameter caused the BadRequestError
)
# Use API defaults if 'auto' is selected
if size != "auto":
kwargs["size"] = size
if quality != "auto":
kwargs["quality"] = quality
# Prompt is optional for variations
if prompt is not None:
kwargs["prompt"] = prompt
# Output format specific settings (API default is png)
if out_fmt != "png":
kwargs["output_format"] = out_fmt
# Transparency via background parameter (png & webp only)
if transparent_bg and out_fmt in {"png", "webp"}:
kwargs["background"] = "transparent"
# Compression for lossy formats (API expects integer 0-100)
if out_fmt in {"jpeg", "webp"}:
# Ensure compression is an integer as expected by the API
kwargs["output_compression"] = int(compression)
return kwargs
# ---------- Generate ---------- #
def generate(
api_key: str,
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image generation endpoint."""
if not prompt:
raise gr.Error("Please enter a prompt.")
client = _client(api_key)
try:
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
resp = client.images.generate(**common_args)
except openai.AuthenticationError:
raise gr.Error("Invalid OpenAI API key.")
except openai.PermissionDeniedError:
raise gr.Error("Permission denied. Check your API key permissions or complete required verification for gpt-image-1.")
except openai.RateLimitError:
raise gr.Error("Rate limit exceeded. Please try again later.")
except openai.BadRequestError as e:
# Extract the specific error message if possible
error_message = str(e)
try:
# Attempt to parse the error body if it's JSON-like
import json
body = json.loads(str(e.body)) # e.body might be bytes
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
error_message = f"OpenAI Bad Request: {body['error']['message']}"
else:
error_message = f"OpenAI Bad Request: {e}"
except:
error_message = f"OpenAI Bad Request: {e}" # Fallback
raise gr.Error(error_message)
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
return _img_list(resp, fmt=out_fmt)
# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
"""Convert RGBA/RGB uint8 numpy array to PNG bytes."""
img = Image.fromarray(arr.astype(np.uint8))
out = io.BytesIO()
img.save(out, format="PNG")
return out.getvalue()
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
if mask_value is None:
return None
# If we already have a numpy array (ImageMask with type="numpy")
if isinstance(mask_value, np.ndarray):
mask_arr = mask_value
# If it's an EditorValue dict coming from ImageEditor/ImageMask with type="file" or "pil"
elif isinstance(mask_value, dict):
# Prefer the composite (all layers merged) if present
comp = mask_value.get("composite")
if comp is not None and isinstance(comp, (Image.Image, np.ndarray)):
mask_arr = np.array(comp) if isinstance(comp, Image.Image) else comp
# Fallback to the mask if present (often from ImageMask)
elif mask_value.get("mask") is not None and isinstance(mask_value["mask"], (Image.Image, np.ndarray)):
mask_arr = np.array(mask_value["mask"]) if isinstance(mask_value["mask"], Image.Image) else mask_value["mask"]
# Fallback to the topmost layer
elif mask_value.get("layers"):
top_layer = mask_value["layers"][-1]
if isinstance(top_layer, (Image.Image, np.ndarray)):
mask_arr = np.array(top_layer) if isinstance(top_layer, Image.Image) else top_layer
else:
return None # Cannot process layer format
else:
return None # No usable image data found in dict
else:
# Unknown format – ignore
return None
# Ensure mask_arr is a numpy array now
if not isinstance(mask_arr, np.ndarray):
return None # Should not happen after above checks, but safeguard
return mask_arr
def edit_image(
api_key: str,
image_numpy: np.ndarray,
mask_value: Optional[Union[np.ndarray, Dict[str, Any]]],
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image edit endpoint."""
if image_numpy is None:
raise gr.Error("Please upload an image.")
if not prompt:
raise gr.Error("Please enter an edit prompt.")
img_bytes = _bytes_from_numpy(image_numpy)
mask_bytes: Optional[bytes] = None
mask_numpy = _extract_mask_array(mask_value)
if mask_numpy is not None:
# Check if the mask seems empty (all black or fully transparent)
is_empty = False
if mask_numpy.ndim == 2: # Grayscale
is_empty = np.all(mask_numpy == 0)
elif mask_numpy.shape[-1] == 4: # RGBA
is_empty = np.all(mask_numpy[:, :, 3] == 0)
elif mask_numpy.shape[-1] == 3: # RGB
is_empty = np.all(mask_numpy == 0)
if is_empty:
gr.Warning("The provided mask appears empty (all black/transparent). The API might edit the entire image or ignore the mask.")
# Pass None if the mask is effectively empty, as per API docs (transparent areas are edited)
mask_bytes = None
else:
# Convert the mask to the format required by the API:
# A PNG image where TRANSPARENT areas indicate where the image should be edited.
# Our Gradio mask uses WHITE to indicate the edit area.
# So, we need to create an alpha channel where white pixels in the input mask become transparent (0),
# and black/other pixels become opaque (255).
if mask_numpy.ndim == 2: # Grayscale input mask
# Assume white (255) means edit -> make transparent (0 alpha)
# Assume black (0) means keep -> make opaque (255 alpha)
alpha = (mask_numpy == 0).astype(np.uint8) * 255
elif mask_numpy.shape[-1] == 4: # RGBA input mask (from gr.ImageMask)
# Use the alpha channel directly if it exists and seems meaningful,
# otherwise, treat non-black RGB as edit area.
# gr.ImageMask often returns RGBA where painted area is white [255,255,255,255] and background is [0,0,0,0]
# We want the painted (white) area to be transparent in the final mask.
# We want the unpainted (transparent black) area to be opaque in the final mask.
alpha = (mask_numpy[:, :, 3] == 0).astype(np.uint8) * 255
elif mask_numpy.shape[-1] == 3: # RGB input mask
# Assume white [255, 255, 255] means edit -> make transparent (0 alpha)
# Assume black [0, 0, 0] or other colors mean keep -> make opaque (255 alpha)
is_white = np.all(mask_numpy == [255, 255, 255], axis=-1)
alpha = (~is_white).astype(np.uint8) * 255
else:
raise gr.Error("Unsupported mask format.")
# Create a single-channel L mode image (grayscale/alpha) for the mask
mask_img = Image.fromarray(alpha, mode='L')
# The API expects an RGBA PNG where the alpha channel defines the mask.
# Create a black image with the calculated alpha channel.
rgba_mask = Image.new("RGBA", mask_img.size, (0, 0, 0, 0))
black_opaque = Image.new("L", mask_img.size, 0) # Black base
rgba_mask.putalpha(mask_img) # Use the calculated alpha
out = io.BytesIO()
rgba_mask.save(out, format="PNG")
mask_bytes = out.getvalue()
# Debug: Save mask locally to check
# rgba_mask.save("debug_mask_sent_to_api.png")
else:
gr.Info("No mask provided. The API will attempt to edit the image based on the prompt without a specific mask.")
mask_bytes = None # Explicitly pass None if no mask is usable
client = _client(api_key)
try:
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
# The edit endpoint requires the prompt
if "prompt" not in common_args:
common_args["prompt"] = prompt # Should always be there via _common_kwargs, but safeguard
# Ensure image and mask are passed correctly
api_kwargs = {
"image": img_bytes,
**common_args
}
if mask_bytes is not None:
api_kwargs["mask"] = mask_bytes
resp = client.images.edit(**api_kwargs)
except openai.AuthenticationError:
raise gr.Error("Invalid OpenAI API key.")
except openai.PermissionDeniedError:
raise gr.Error("Permission denied. Check your API key permissions or complete required verification for gpt-image-1.")
except openai.RateLimitError:
raise gr.Error("Rate limit exceeded. Please try again later.")
except openai.BadRequestError as e:
error_message = str(e)
try:
import json
body = json.loads(str(e.body))
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
error_message = f"OpenAI Bad Request: {body['error']['message']}"
# Add specific advice based on common mask errors
if "mask" in error_message.lower():
error_message += " (Ensure mask is a valid PNG with an alpha channel and matches the image dimensions.)"
elif "size" in error_message.lower():
error_message += " (Ensure image and mask dimensions match and are supported.)"
else:
error_message = f"OpenAI Bad Request: {e}"
except:
error_message = f"OpenAI Bad Request: {e}" # Fallback
raise gr.Error(error_message)
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
return _img_list(resp, fmt=out_fmt)
# ---------- Variations ---------- #
def variation_image(
api_key: str,
image_numpy: np.ndarray,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image variations endpoint."""
# NOTE: Variations are only supported for DALL-E 2 according to docs.
# This might fail with gpt-image-1. Consider adding a check or using DALL-E 2.
gr.Warning("Note: Image variations are officially supported for DALL·E 2, not gpt-image-1. This may not work as expected.")
if image_numpy is None:
raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
client = _client(api_key)
try:
# Prompt is None for variations
common_args = _common_kwargs(None, n, size, quality, out_fmt, compression, transparent_bg)
resp = client.images.variations(
image=img_bytes,
**common_args,
)
except openai.AuthenticationError:
raise gr.Error("Invalid OpenAI API key.")
except openai.PermissionDeniedError:
raise gr.Error("Permission denied. Check your API key permissions.")
except openai.RateLimitError:
raise gr.Error("Rate limit exceeded. Please try again later.")
except openai.BadRequestError as e:
error_message = str(e)
try:
import json
body = json.loads(str(e.body))
if isinstance(body, dict) and 'error' in body and 'message' in body['error']:
error_message = f"OpenAI Bad Request: {body['error']['message']}"
if "model does not support variations" in error_message.lower():
error_message += " (gpt-image-1 does not support variations, use DALL·E 2 instead)."
else:
error_message = f"OpenAI Bad Request: {e}"
except:
error_message = f"OpenAI Bad Request: {e}" # Fallback
raise gr.Error(error_message)
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
return _img_list(resp, fmt=out_fmt)
# ---------- UI ---------- #
def build_ui():
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
gr.Markdown(
"Enter your OpenAI API key below. It's used directly for API calls and **never stored**."
" This space uses the `gpt-image-1` model."
" **Note:** `gpt-image-1` may require organization verification. Variations endpoint might not work with this model (use DALL·E 2)."
)
with gr.Accordion("🔐 API key", open=False):
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-…")
# Common controls
with gr.Row():
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.") # Limit n for stability/cost
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'.")
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'.")
with gr.Row():
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Format", scale=1)
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False, scale=2)
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)", scale=1)
def _toggle_compression(fmt):
return gr.update(visible=fmt in {"jpeg", "webp"})
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
common_inputs = [api, n_slider, size, quality, out_fmt, compression, transparent]
with gr.Tabs():
# ----- Generate Tab ----- #
with gr.TabItem("Generate"):
with gr.Row():
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)
btn_gen.click(
generate,
inputs=[prompt_gen] + common_inputs, # Prepend specific inputs
outputs=gallery_gen,
api_name="generate"
)
# ----- Edit Tab ----- #
with gr.TabItem("Edit / Inpaint"):
gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white = edit area). The API requires the mask and image to have the same dimensions.")
with gr.Row():
img_edit = gr.Image(label="Source Image", type="numpy", height=400)
# Use ImageMask component for interactive painting
mask_canvas = gr.ImageMask(
label="Mask – Paint White Where Image Should Change",
type="numpy", # Get mask as numpy array
height=400
)
with gr.Row():
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)
btn_edit.click(
edit_image,
inputs=[img_edit, mask_canvas, prompt_edit] + common_inputs, # Prepend specific inputs
outputs=gallery_edit,
api_name="edit"
)
# ----- Variations Tab ----- #
with gr.TabItem("Variations (DALL·E 2 only)"):
gr.Markdown("Upload an image to generate variations. **Note:** This endpoint is officially supported for DALL·E 2, not `gpt-image-1`. It likely won't work here.")
with gr.Row():
img_var = gr.Image(label="Source Image", type="numpy", height=400, scale=4)
btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)
btn_var.click(
variation_image,
inputs=[img_var] + common_inputs, # Prepend specific inputs
outputs=gallery_var,
api_name="variations"
)
return demo
if __name__ == "__main__":
app = build_ui()
# Set share=True to create a public link (useful for Spaces)
# Set debug=True for more detailed logs in the console
app.launch(share=os.getenv("GRADIO_SHARE") == "true", debug=True)