File size: 15,962 Bytes
c164914
9047431
c164914
 
9047431
c164914
 
 
68971bf
c164914
68971bf
55375ee
c164914
 
 
 
 
 
 
 
 
 
 
55375ee
c164914
 
 
 
 
 
 
 
 
 
 
 
 
68971bf
c164914
 
 
 
 
 
9047431
 
 
c164914
68971bf
c164914
 
 
 
 
 
 
 
 
 
 
 
68971bf
9047431
 
c164914
 
68971bf
c164914
9047431
68971bf
 
 
 
 
 
9047431
c164914
 
9047431
68971bf
 
 
 
9047431
68971bf
9047431
 
68971bf
c164914
68971bf
9047431
c164914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68971bf
 
 
c164914
 
68971bf
 
 
 
 
 
 
 
 
 
c164914
68971bf
9047431
c164914
 
 
 
 
 
 
 
 
 
 
 
55375ee
 
 
 
 
 
 
68971bf
 
 
55375ee
 
68971bf
 
 
 
 
55375ee
68971bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55375ee
 
c164914
 
 
55375ee
c164914
 
 
 
 
 
 
 
68971bf
c164914
 
68971bf
 
 
c164914
 
 
55375ee
 
c164914
68971bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c164914
 
 
68971bf
 
 
 
 
c164914
 
68971bf
 
c164914
68971bf
 
 
 
 
 
 
 
 
 
 
 
 
 
c164914
68971bf
9047431
c164914
 
 
 
 
 
 
 
 
 
 
 
 
 
68971bf
c164914
 
 
 
 
68971bf
 
c164914
 
68971bf
c164914
68971bf
 
 
 
 
 
 
 
c164914
68971bf
9047431
c164914
 
 
 
 
9047431
68971bf
 
 
 
 
c164914
 
9047431
c164914
 
68971bf
 
 
 
 
 
 
 
c164914
 
 
 
 
 
 
 
 
68971bf
 
 
 
c164914
 
 
 
68971bf
c164914
 
 
 
68971bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c164914
 
 
 
68971bf
c164914
 
 
 
68971bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
Gradio Space: GPT-Image-1 – BYOT playground
Generate · Edit (paint mask!) · Variations
==========================================
Adds an **in-browser paint tool** for the edit / inpaint workflow so users can
draw the mask directly instead of uploading one.

### How mask painting works
* Upload an image.
* Use the *Mask* canvas to **paint the areas you’d like changed** (white =
  editable, black = keep).
  The new `gr.ImageMask` component captures your brush strokes.
* The painted mask is converted to a 1‑channel PNG and sent to the
  `images.edit()` endpoint.

All other controls (size, quality, format, compression, n, background) stay the
same.
"""

from __future__ import annotations

import io
import os
from typing import List, Optional, Union, Dict, Any

import gradio as gr
import numpy as np
from PIL import Image
import openai

MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]


def _client(key: str) -> openai.OpenAI:
    """Initializes the OpenAI client with the provided API key."""
    api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
    if not api_key:
        raise gr.Error("Please enter your OpenAI API key (never stored)")
    return openai.OpenAI(api_key=api_key)


def _img_list(resp, *, fmt: str) -> List[str]:
    """Return list of data URLs or direct URLs depending on API response."""
    mime = f"image/{fmt}"
    return [
        f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
        for d in resp.data
    ]


def _common_kwargs(
    prompt: Optional[str],
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
) -> Dict[str, Any]:
    """Prepare keyword arguments for Images API based on latest OpenAI spec."""
    kwargs: Dict[str, Any] = dict(
        model=MODEL,
        n=n,
        response_format="b64_json", # Request base64 to avoid potential URL expiry issues
    )

    # Use API defaults if 'auto' is selected
    if size != "auto":
        kwargs["size"] = size
    if quality != "auto":
        kwargs["quality"] = quality

    # Prompt is optional for variations
    if prompt is not None:
        kwargs["prompt"] = prompt

    # Output format specific settings
    if out_fmt != "png": # API default is png
        kwargs["output_format"] = out_fmt

    # Transparency via background parameter (png & webp only)
    if transparent_bg and out_fmt in {"png", "webp"}:
        kwargs["background"] = "transparent"

    # Compression for lossy formats (API expects integer 0-100)
    if out_fmt in {"jpeg", "webp"}:
        kwargs["output_compression"] = compression

    return kwargs


# ---------- Generate ---------- #

def generate(
    api_key: str,
    prompt: str,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    """Calls the OpenAI image generation endpoint."""
    if not prompt:
        raise gr.Error("Please enter a prompt.")
    client = _client(api_key)
    try:
        common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
        resp = client.images.generate(**common_args)
    except openai.AuthenticationError:
         raise gr.Error("Invalid OpenAI API key.")
    except openai.PermissionDeniedError:
        raise gr.Error("Permission denied. Check your API key permissions.")
    except openai.RateLimitError:
        raise gr.Error("Rate limit exceeded. Please try again later.")
    except openai.BadRequestError as e:
        raise gr.Error(f"OpenAI Bad Request: {e}")
    except Exception as e:
        raise gr.Error(f"An unexpected error occurred: {e}")
    return _img_list(resp, fmt=out_fmt)


# ---------- Edit / Inpaint ---------- #

def _bytes_from_numpy(arr: np.ndarray) -> bytes:
    """Convert RGBA/RGB uint8 numpy array to PNG bytes."""
    img = Image.fromarray(arr.astype(np.uint8))
    out = io.BytesIO()
    img.save(out, format="PNG")
    return out.getvalue()


def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
    """Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
    if mask_value is None:
        return None

    # If we already have a numpy array (ImageMask with type="numpy")
    if isinstance(mask_value, np.ndarray):
        mask_arr = mask_value
    # If it's an EditorValue dict coming from ImageEditor/ImageMask with type="file" or "pil"
    elif isinstance(mask_value, dict):
        # Prefer the composite (all layers merged) if present
        comp = mask_value.get("composite")
        if comp is not None and isinstance(comp, (Image.Image, np.ndarray)):
             mask_arr = np.array(comp) if isinstance(comp, Image.Image) else comp
        # Fallback to the mask if present (often from ImageMask)
        elif mask_value.get("mask") is not None and isinstance(mask_value["mask"], (Image.Image, np.ndarray)):
             mask_arr = np.array(mask_value["mask"]) if isinstance(mask_value["mask"], Image.Image) else mask_value["mask"]
        # Fallback to the topmost layer
        elif mask_value.get("layers"):
            top_layer = mask_value["layers"][-1]
            if isinstance(top_layer, (Image.Image, np.ndarray)):
                 mask_arr = np.array(top_layer) if isinstance(top_layer, Image.Image) else top_layer
            else:
                 return None # Cannot process layer format
        else:
            return None # No usable image data found in dict
    else:
        # Unknown format – ignore
        return None

    # Ensure mask_arr is a numpy array now
    if not isinstance(mask_arr, np.ndarray):
        return None # Should not happen after above checks, but safeguard

    return mask_arr


def edit_image(
    api_key: str,
    image_numpy: np.ndarray,
    mask_value: Optional[Union[np.ndarray, Dict[str, Any]]],
    prompt: str,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    """Calls the OpenAI image edit endpoint."""
    if image_numpy is None:
        raise gr.Error("Please upload an image.")
    if not prompt:
        raise gr.Error("Please enter an edit prompt.")

    img_bytes = _bytes_from_numpy(image_numpy)

    mask_bytes: Optional[bytes] = None
    mask_numpy = _extract_mask_array(mask_value)

    if mask_numpy is not None:
        # Check if the mask seems empty (all black or fully transparent)
        if np.all(mask_numpy == 0) or (mask_numpy.shape[-1] == 4 and np.all(mask_numpy[:, :, 3] == 0)):
             gr.Warning("The provided mask appears empty. The entire image might be edited if no mask is applied by the API.")
             # We explicitly pass None if the mask is effectively empty,
             # letting the API decide how to handle it (might vary by model/version)
             mask_bytes = None
        else:
            # Convert painted area (any non-black pixel or non-transparent pixel) to white, else black; 1‑channel alpha.
            # The API expects the mask as a single alpha channel where transparency indicates the area to edit.
            # White in our canvas means "edit", so this needs to become transparent in the mask sent to the API.
            # Black in our canvas means "keep", so this needs to become opaque in the mask sent to the API.

            if mask_numpy.ndim == 2: # Grayscale
                alpha = (mask_numpy == 0).astype(np.uint8) * 255 # Black becomes opaque (255), white becomes transparent (0)
            elif mask_numpy.shape[-1] == 4:  # RGBA (use alpha channel)
                alpha = (mask_numpy[:, :, 3] == 0).astype(np.uint8) * 255 # Transparent becomes opaque, opaque becomes transparent
            elif mask_numpy.shape[-1] == 3: # RGB
                # Consider any non-black pixel as the area to edit (becomes transparent)
                 alpha = np.all(mask_numpy == [0, 0, 0], axis=-1).astype(np.uint8) * 255
            else:
                 raise gr.Error("Unsupported mask format.")

            # Create a single-channel L mode image (grayscale) for the mask
            mask_img = Image.fromarray(alpha, mode='L')
            out = io.BytesIO()
            mask_img.save(out, format="PNG")
            mask_bytes = out.getvalue()

            # Debug: Save mask locally to check
            # mask_img.save("debug_mask_sent_to_api.png")

    else:
        gr.Warning("No mask provided or mask could not be processed. The API might edit the entire image or apply a default mask.")
        mask_bytes = None # Explicitly pass None if no mask is usable

    client = _client(api_key)
    try:
        common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
        # The edit endpoint requires the prompt
        if "prompt" not in common_args:
             common_args["prompt"] = prompt # Should always be there via _common_kwargs, but safeguard

        resp = client.images.edit(
            image=img_bytes,
            mask=mask_bytes, # Pass None if no mask or empty mask
            **common_args,
        )
    except openai.AuthenticationError:
         raise gr.Error("Invalid OpenAI API key.")
    except openai.PermissionDeniedError:
        raise gr.Error("Permission denied. Check your API key permissions.")
    except openai.RateLimitError:
        raise gr.Error("Rate limit exceeded. Please try again later.")
    except openai.BadRequestError as e:
        # Provide more specific feedback if possible
        if "mask" in str(e) and "alpha channel" in str(e):
             raise gr.Error("OpenAI API Error: The mask must be a PNG image with transparency indicating the edit area. Ensure your mask was processed correctly.")
        elif "size" in str(e):
             raise gr.Error(f"OpenAI API Error: Image and mask size mismatch or invalid size. Ensure image is square if required by the model. Error: {e}")
        else:
             raise gr.Error(f"OpenAI Bad Request: {e}")
    except Exception as e:
        raise gr.Error(f"An unexpected error occurred: {e}")
    return _img_list(resp, fmt=out_fmt)


# ---------- Variations ---------- #

def variation_image(
    api_key: str,
    image_numpy: np.ndarray,
    n: int,
    size: str,
    quality: str,
    out_fmt: str,
    compression: int,
    transparent_bg: bool,
):
    """Calls the OpenAI image variations endpoint."""
    if image_numpy is None:
        raise gr.Error("Please upload an image.")
    img_bytes = _bytes_from_numpy(image_numpy)
    client = _client(api_key)
    try:
        # Prompt is None for variations
        common_args = _common_kwargs(None, n, size, quality, out_fmt, compression, transparent_bg)
        resp = client.images.variations(
            image=img_bytes,
            **common_args,
        )
    except openai.AuthenticationError:
         raise gr.Error("Invalid OpenAI API key.")
    except openai.PermissionDeniedError:
        raise gr.Error("Permission denied. Check your API key permissions.")
    except openai.RateLimitError:
        raise gr.Error("Rate limit exceeded. Please try again later.")
    except openai.BadRequestError as e:
        raise gr.Error(f"OpenAI Bad Request: {e}")
    except Exception as e:
        raise gr.Error(f"An unexpected error occurred: {e}")
    return _img_list(resp, fmt=out_fmt)


# ---------- UI ---------- #

def build_ui():
    with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
        gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
        gr.Markdown(
             "Enter your OpenAI API key below. It's used directly for API calls and **never stored**."
             " This space uses the `gpt-image-1` model."
        )

        with gr.Accordion("🔐 API key", open=False):
            api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-…")

        # Common controls
        with gr.Row():
             n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.") # Limit n for stability/cost
             size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'.")
             quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'.")
        with gr.Row():
            out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Format")
            compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False)
            transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)")

        def _toggle_compression(fmt):
            return gr.update(visible=fmt in {"jpeg", "webp"})

        out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)

        with gr.Tabs():
            # ----- Generate Tab ----- #
            with gr.TabItem("Generate"):
                with gr.Row():
                    prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
                    btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
                gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)
                btn_gen.click(
                    generate,
                    inputs=[api, prompt_gen, n_slider, size, quality, out_fmt, compression, transparent],
                    outputs=gallery_gen,
                    api_name="generate"
                )

            # ----- Edit Tab ----- #
            with gr.TabItem("Edit / Inpaint"):
                gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white = edit).")
                with gr.Row():
                    img_edit = gr.Image(label="Source Image", type="numpy", height=400)
                    # Use ImageMask component for interactive painting
                    mask_canvas = gr.ImageMask(
                         label="Mask – Paint White Where Image Should Change",
                         type="numpy", # Get mask as numpy array
                         # brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), # Force white brush
                         # mask_opacity=0.7 # Adjust mask visibility on image
                         height=400
                    )
                with gr.Row():
                    prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
                    btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
                gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)
                btn_edit.click(
                    edit_image,
                    inputs=[api, img_edit, mask_canvas, prompt_edit, n_slider, size, quality, out_fmt, compression, transparent],
                    outputs=gallery_edit,
                    api_name="edit"
                )

            # ----- Variations Tab ----- #
            with gr.TabItem("Variations"):
                gr.Markdown("Upload an image to generate variations.")
                with gr.Row():
                    img_var = gr.Image(label="Source Image", type="numpy", height=400, scale=4)
                    btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
                gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)
                btn_var.click(
                    variation_image,
                    inputs=[api, img_var, n_slider, size, quality, out_fmt, compression, transparent],
                    outputs=gallery_var,
                    api_name="variations"
                )

    return demo

if __name__ == "__main__":
    app = build_ui()
    app.launch()