Spaces:
Running
Running
File size: 15,962 Bytes
c164914 9047431 c164914 9047431 c164914 68971bf c164914 68971bf 55375ee c164914 55375ee c164914 68971bf c164914 9047431 c164914 68971bf c164914 68971bf 9047431 c164914 68971bf c164914 9047431 68971bf 9047431 c164914 9047431 68971bf 9047431 68971bf 9047431 68971bf c164914 68971bf 9047431 c164914 68971bf c164914 68971bf c164914 68971bf 9047431 c164914 55375ee 68971bf 55375ee 68971bf 55375ee 68971bf 55375ee c164914 55375ee c164914 68971bf c164914 68971bf c164914 55375ee c164914 68971bf c164914 68971bf c164914 68971bf c164914 68971bf c164914 68971bf 9047431 c164914 68971bf c164914 68971bf c164914 68971bf c164914 68971bf c164914 68971bf 9047431 c164914 9047431 68971bf c164914 9047431 c164914 68971bf c164914 68971bf c164914 68971bf c164914 68971bf c164914 68971bf c164914 68971bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
"""
Gradio Space: GPT-Image-1 – BYOT playground
Generate · Edit (paint mask!) · Variations
==========================================
Adds an **in-browser paint tool** for the edit / inpaint workflow so users can
draw the mask directly instead of uploading one.
### How mask painting works
* Upload an image.
* Use the *Mask* canvas to **paint the areas you’d like changed** (white =
editable, black = keep).
The new `gr.ImageMask` component captures your brush strokes.
* The painted mask is converted to a 1‑channel PNG and sent to the
`images.edit()` endpoint.
All other controls (size, quality, format, compression, n, background) stay the
same.
"""
from __future__ import annotations
import io
import os
from typing import List, Optional, Union, Dict, Any
import gradio as gr
import numpy as np
from PIL import Image
import openai
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]
def _client(key: str) -> openai.OpenAI:
"""Initializes the OpenAI client with the provided API key."""
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
if not api_key:
raise gr.Error("Please enter your OpenAI API key (never stored)")
return openai.OpenAI(api_key=api_key)
def _img_list(resp, *, fmt: str) -> List[str]:
"""Return list of data URLs or direct URLs depending on API response."""
mime = f"image/{fmt}"
return [
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") and d.b64_json else d.url
for d in resp.data
]
def _common_kwargs(
prompt: Optional[str],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
) -> Dict[str, Any]:
"""Prepare keyword arguments for Images API based on latest OpenAI spec."""
kwargs: Dict[str, Any] = dict(
model=MODEL,
n=n,
response_format="b64_json", # Request base64 to avoid potential URL expiry issues
)
# Use API defaults if 'auto' is selected
if size != "auto":
kwargs["size"] = size
if quality != "auto":
kwargs["quality"] = quality
# Prompt is optional for variations
if prompt is not None:
kwargs["prompt"] = prompt
# Output format specific settings
if out_fmt != "png": # API default is png
kwargs["output_format"] = out_fmt
# Transparency via background parameter (png & webp only)
if transparent_bg and out_fmt in {"png", "webp"}:
kwargs["background"] = "transparent"
# Compression for lossy formats (API expects integer 0-100)
if out_fmt in {"jpeg", "webp"}:
kwargs["output_compression"] = compression
return kwargs
# ---------- Generate ---------- #
def generate(
api_key: str,
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image generation endpoint."""
if not prompt:
raise gr.Error("Please enter a prompt.")
client = _client(api_key)
try:
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
resp = client.images.generate(**common_args)
except openai.AuthenticationError:
raise gr.Error("Invalid OpenAI API key.")
except openai.PermissionDeniedError:
raise gr.Error("Permission denied. Check your API key permissions.")
except openai.RateLimitError:
raise gr.Error("Rate limit exceeded. Please try again later.")
except openai.BadRequestError as e:
raise gr.Error(f"OpenAI Bad Request: {e}")
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
return _img_list(resp, fmt=out_fmt)
# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
"""Convert RGBA/RGB uint8 numpy array to PNG bytes."""
img = Image.fromarray(arr.astype(np.uint8))
out = io.BytesIO()
img.save(out, format="PNG")
return out.getvalue()
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
if mask_value is None:
return None
# If we already have a numpy array (ImageMask with type="numpy")
if isinstance(mask_value, np.ndarray):
mask_arr = mask_value
# If it's an EditorValue dict coming from ImageEditor/ImageMask with type="file" or "pil"
elif isinstance(mask_value, dict):
# Prefer the composite (all layers merged) if present
comp = mask_value.get("composite")
if comp is not None and isinstance(comp, (Image.Image, np.ndarray)):
mask_arr = np.array(comp) if isinstance(comp, Image.Image) else comp
# Fallback to the mask if present (often from ImageMask)
elif mask_value.get("mask") is not None and isinstance(mask_value["mask"], (Image.Image, np.ndarray)):
mask_arr = np.array(mask_value["mask"]) if isinstance(mask_value["mask"], Image.Image) else mask_value["mask"]
# Fallback to the topmost layer
elif mask_value.get("layers"):
top_layer = mask_value["layers"][-1]
if isinstance(top_layer, (Image.Image, np.ndarray)):
mask_arr = np.array(top_layer) if isinstance(top_layer, Image.Image) else top_layer
else:
return None # Cannot process layer format
else:
return None # No usable image data found in dict
else:
# Unknown format – ignore
return None
# Ensure mask_arr is a numpy array now
if not isinstance(mask_arr, np.ndarray):
return None # Should not happen after above checks, but safeguard
return mask_arr
def edit_image(
api_key: str,
image_numpy: np.ndarray,
mask_value: Optional[Union[np.ndarray, Dict[str, Any]]],
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image edit endpoint."""
if image_numpy is None:
raise gr.Error("Please upload an image.")
if not prompt:
raise gr.Error("Please enter an edit prompt.")
img_bytes = _bytes_from_numpy(image_numpy)
mask_bytes: Optional[bytes] = None
mask_numpy = _extract_mask_array(mask_value)
if mask_numpy is not None:
# Check if the mask seems empty (all black or fully transparent)
if np.all(mask_numpy == 0) or (mask_numpy.shape[-1] == 4 and np.all(mask_numpy[:, :, 3] == 0)):
gr.Warning("The provided mask appears empty. The entire image might be edited if no mask is applied by the API.")
# We explicitly pass None if the mask is effectively empty,
# letting the API decide how to handle it (might vary by model/version)
mask_bytes = None
else:
# Convert painted area (any non-black pixel or non-transparent pixel) to white, else black; 1‑channel alpha.
# The API expects the mask as a single alpha channel where transparency indicates the area to edit.
# White in our canvas means "edit", so this needs to become transparent in the mask sent to the API.
# Black in our canvas means "keep", so this needs to become opaque in the mask sent to the API.
if mask_numpy.ndim == 2: # Grayscale
alpha = (mask_numpy == 0).astype(np.uint8) * 255 # Black becomes opaque (255), white becomes transparent (0)
elif mask_numpy.shape[-1] == 4: # RGBA (use alpha channel)
alpha = (mask_numpy[:, :, 3] == 0).astype(np.uint8) * 255 # Transparent becomes opaque, opaque becomes transparent
elif mask_numpy.shape[-1] == 3: # RGB
# Consider any non-black pixel as the area to edit (becomes transparent)
alpha = np.all(mask_numpy == [0, 0, 0], axis=-1).astype(np.uint8) * 255
else:
raise gr.Error("Unsupported mask format.")
# Create a single-channel L mode image (grayscale) for the mask
mask_img = Image.fromarray(alpha, mode='L')
out = io.BytesIO()
mask_img.save(out, format="PNG")
mask_bytes = out.getvalue()
# Debug: Save mask locally to check
# mask_img.save("debug_mask_sent_to_api.png")
else:
gr.Warning("No mask provided or mask could not be processed. The API might edit the entire image or apply a default mask.")
mask_bytes = None # Explicitly pass None if no mask is usable
client = _client(api_key)
try:
common_args = _common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg)
# The edit endpoint requires the prompt
if "prompt" not in common_args:
common_args["prompt"] = prompt # Should always be there via _common_kwargs, but safeguard
resp = client.images.edit(
image=img_bytes,
mask=mask_bytes, # Pass None if no mask or empty mask
**common_args,
)
except openai.AuthenticationError:
raise gr.Error("Invalid OpenAI API key.")
except openai.PermissionDeniedError:
raise gr.Error("Permission denied. Check your API key permissions.")
except openai.RateLimitError:
raise gr.Error("Rate limit exceeded. Please try again later.")
except openai.BadRequestError as e:
# Provide more specific feedback if possible
if "mask" in str(e) and "alpha channel" in str(e):
raise gr.Error("OpenAI API Error: The mask must be a PNG image with transparency indicating the edit area. Ensure your mask was processed correctly.")
elif "size" in str(e):
raise gr.Error(f"OpenAI API Error: Image and mask size mismatch or invalid size. Ensure image is square if required by the model. Error: {e}")
else:
raise gr.Error(f"OpenAI Bad Request: {e}")
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
return _img_list(resp, fmt=out_fmt)
# ---------- Variations ---------- #
def variation_image(
api_key: str,
image_numpy: np.ndarray,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
"""Calls the OpenAI image variations endpoint."""
if image_numpy is None:
raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
client = _client(api_key)
try:
# Prompt is None for variations
common_args = _common_kwargs(None, n, size, quality, out_fmt, compression, transparent_bg)
resp = client.images.variations(
image=img_bytes,
**common_args,
)
except openai.AuthenticationError:
raise gr.Error("Invalid OpenAI API key.")
except openai.PermissionDeniedError:
raise gr.Error("Permission denied. Check your API key permissions.")
except openai.RateLimitError:
raise gr.Error("Rate limit exceeded. Please try again later.")
except openai.BadRequestError as e:
raise gr.Error(f"OpenAI Bad Request: {e}")
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {e}")
return _img_list(resp, fmt=out_fmt)
# ---------- UI ---------- #
def build_ui():
with gr.Blocks(title="GPT-Image-1 (BYOT)") as demo:
gr.Markdown("""# GPT-Image-1 Playground 🖼️🔑\nGenerate • Edit (paint mask!) • Variations""")
gr.Markdown(
"Enter your OpenAI API key below. It's used directly for API calls and **never stored**."
" This space uses the `gpt-image-1` model."
)
with gr.Accordion("🔐 API key", open=False):
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk-…")
# Common controls
with gr.Row():
n_slider = gr.Slider(1, 4, value=1, step=1, label="Number of images (n)", info="Max 4 for this demo.") # Limit n for stability/cost
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size", info="API default if 'auto'.")
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality", info="API default if 'auto'.")
with gr.Row():
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Format")
compression = gr.Slider(0, 100, value=75, step=1, label="Compression % (JPEG/WebP)", visible=False)
transparent = gr.Checkbox(False, label="Transparent background (PNG/WebP only)")
def _toggle_compression(fmt):
return gr.update(visible=fmt in {"jpeg", "webp"})
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
with gr.Tabs():
# ----- Generate Tab ----- #
with gr.TabItem("Generate"):
with gr.Row():
prompt_gen = gr.Textbox(label="Prompt", lines=3, placeholder="A photorealistic ginger cat astronaut on Mars", scale=4)
btn_gen = gr.Button("Generate 🚀", variant="primary", scale=1)
gallery_gen = gr.Gallery(label="Generated Images", columns=2, height="auto", preview=True)
btn_gen.click(
generate,
inputs=[api, prompt_gen, n_slider, size, quality, out_fmt, compression, transparent],
outputs=gallery_gen,
api_name="generate"
)
# ----- Edit Tab ----- #
with gr.TabItem("Edit / Inpaint"):
gr.Markdown("Upload an image, then **paint the area to change** in the mask canvas below (white = edit).")
with gr.Row():
img_edit = gr.Image(label="Source Image", type="numpy", height=400)
# Use ImageMask component for interactive painting
mask_canvas = gr.ImageMask(
label="Mask – Paint White Where Image Should Change",
type="numpy", # Get mask as numpy array
# brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), # Force white brush
# mask_opacity=0.7 # Adjust mask visibility on image
height=400
)
with gr.Row():
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night", scale=4)
btn_edit = gr.Button("Edit 🖌️", variant="primary", scale=1)
gallery_edit = gr.Gallery(label="Edited Images", columns=2, height="auto", preview=True)
btn_edit.click(
edit_image,
inputs=[api, img_edit, mask_canvas, prompt_edit, n_slider, size, quality, out_fmt, compression, transparent],
outputs=gallery_edit,
api_name="edit"
)
# ----- Variations Tab ----- #
with gr.TabItem("Variations"):
gr.Markdown("Upload an image to generate variations.")
with gr.Row():
img_var = gr.Image(label="Source Image", type="numpy", height=400, scale=4)
btn_var = gr.Button("Create Variations ✨", variant="primary", scale=1)
gallery_var = gr.Gallery(label="Variations", columns=2, height="auto", preview=True)
btn_var.click(
variation_image,
inputs=[api, img_var, n_slider, size, quality, out_fmt, compression, transparent],
outputs=gallery_var,
api_name="variations"
)
return demo
if __name__ == "__main__":
app = build_ui()
app.launch()
|