Spaces:
Running
Running
File size: 8,787 Bytes
c164914 55375ee c164914 55375ee c164914 55375ee c164914 55375ee c164914 55375ee c164914 55375ee c164914 55375ee c164914 55375ee c164914 55375ee c164914 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
"""
Gradio Space: GPT‑Image‑1 – BYOT playground
Generate · Edit (paint mask!) · Variations
==========================================
Adds an **in‑browser paint tool** for the edit / inpaint workflow so users can
draw the mask directly instead of uploading one.
### How mask painting works
* Upload an image.
* Use the *Mask* canvas to **paint the areas you’d like changed** (white =
editable, black = keep).
The new `gr.ImageMask` component captures your brush strokes.
* The painted mask is converted to a 1‑channel PNG and sent to the
`images.edit()` endpoint.
All other controls (size, quality, format, compression, n, background) stay the
same.
"""
from __future__ import annotations
import io
import os
from typing import List, Optional, Union, Dict, Any
import gradio as gr
import numpy as np
from PIL import Image
import openai
MODEL = "gpt-image-1"
SIZE_CHOICES = ["auto", "1024x1024", "1536x1024", "1024x1536"]
QUALITY_CHOICES = ["auto", "low", "medium", "high"]
FORMAT_CHOICES = ["png", "jpeg", "webp"]
def _client(key: str) -> openai.OpenAI:
api_key = key.strip() or os.getenv("OPENAI_API_KEY", "")
if not api_key:
raise gr.Error("Please enter your OpenAI API key (never stored)")
return openai.OpenAI(api_key=api_key)
def _img_list(resp, *, fmt: str, transparent: bool) -> List[str]:
mime = "image/png" if fmt == "png" or transparent else f"image/{fmt}"
return [
f"data:{mime};base64,{d.b64_json}" if hasattr(d, "b64_json") else d.url
for d in resp.data
]
def _common_kwargs(
prompt: Optional[str],
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
kwargs = dict(
model=MODEL,
n=n,
size=size,
quality=quality,
output_format=out_fmt,
transparent_background=transparent_bg,
response_format="url" if out_fmt == "png" and not transparent_bg else "b64_json",
)
if prompt is not None:
kwargs["prompt"] = prompt
if out_fmt in {"jpeg", "webp"}:
kwargs["compression"] = f"{compression}%"
return kwargs
# ---------- Generate ---------- #
def generate(
api_key: str,
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
client = _client(api_key)
try:
resp = client.images.generate(**_common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg))
except Exception as e:
raise gr.Error(f"OpenAI error: {e}")
return _img_list(resp, fmt=out_fmt, transparent=transparent_bg)
# ---------- Edit / Inpaint ---------- #
def _bytes_from_numpy(arr: np.ndarray) -> bytes:
"""Convert RGBA/RGB uint8 numpy array to PNG bytes."""
img = Image.fromarray(arr.astype(np.uint8))
out = io.BytesIO()
img.save(out, format="PNG")
return out.getvalue()
def _extract_mask_array(mask_value: Union[np.ndarray, Dict[str, Any], None]) -> Optional[np.ndarray]:
"""Handle ImageMask / ImageEditor return formats and extract a numpy mask array."""
if mask_value is None:
return None
# If we already have a numpy array (ImageMask with type="numpy")
if isinstance(mask_value, np.ndarray):
return mask_value
# If it's an EditorValue dict coming from ImageEditor/ImageMask with type="numpy"
if isinstance(mask_value, dict):
# Prefer the composite (all layers merged) if present
comp = mask_value.get("composite")
if comp is not None:
return np.asarray(comp)
# Fallback to the topmost layer
layers = mask_value.get("layers")
if layers:
return np.asarray(layers[-1])
# Unknown format – ignore
return None
def edit_image(
api_key: str,
image_numpy: np.ndarray,
mask_value: Optional[Union[np.ndarray, Dict[str, Any]]],
prompt: str,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
if image_numpy is None:
raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
mask_bytes: Optional[bytes] = None
mask_numpy = _extract_mask_array(mask_value)
if mask_numpy is not None:
# Convert painted area (any non‑zero pixel) to white, else black; 1‑channel.
if mask_numpy.shape[-1] == 4: # RGBA (has alpha channel)
alpha = mask_numpy[:, :, 3]
else: # RGB or grayscale
alpha = np.any(mask_numpy != 0, axis=-1).astype(np.uint8) * 255
bw = np.stack([alpha] * 3, axis=-1) # 3‑channel white/black
mask_bytes = _bytes_from_numpy(bw)
client = _client(api_key)
try:
resp = client.images.edit(
image=img_bytes,
mask=mask_bytes,
**_common_kwargs(prompt, n, size, quality, out_fmt, compression, transparent_bg),
)
except Exception as e:
raise gr.Error(f"OpenAI error: {e}")
return _img_list(resp, fmt=out_fmt, transparent=transparent_bg)
# ---------- Variations ---------- #
def variation_image(
api_key: str,
image_numpy: np.ndarray,
n: int,
size: str,
quality: str,
out_fmt: str,
compression: int,
transparent_bg: bool,
):
if image_numpy is None:
raise gr.Error("Please upload an image.")
img_bytes = _bytes_from_numpy(image_numpy)
client = _client(api_key)
try:
resp = client.images.variations(
image=img_bytes,
**_common_kwargs(None, n, size, quality, out_fmt, compression, transparent_bg),
)
except Exception as e:
raise gr.Error(f"OpenAI error: {e}")
return _img_list(resp, fmt=out_fmt, transparent=transparent_bg)
# ---------- UI ---------- #
def build_ui():
with gr.Blocks(title="GPT‑Image‑1 (BYOT)") as demo:
gr.Markdown("""# GPT‑Image‑1 Playground 🖼️🔑\nGenerate • Edit (paint mask) • Variations""")
with gr.Accordion("🔐 API key", open=False):
api = gr.Textbox(label="OpenAI API key", type="password", placeholder="sk‑…")
# Common controls
n_slider = gr.Slider(1, 10, value=1, step=1, label="Number of images (n)")
size = gr.Dropdown(SIZE_CHOICES, value="auto", label="Size")
quality = gr.Dropdown(QUALITY_CHOICES, value="auto", label="Quality")
out_fmt = gr.Radio(FORMAT_CHOICES, value="png", label="Format")
compression = gr.Slider(0, 100, value=75, step=1, label="Compression (JPEG/WebP)")
transparent = gr.Checkbox(False, label="Transparent background (PNG only)")
def _toggle_compression(fmt):
return gr.update(visible=fmt in {"jpeg", "webp"})
out_fmt.change(_toggle_compression, inputs=out_fmt, outputs=compression)
with gr.Tabs():
# ----- Generate Tab ----- #
with gr.TabItem("Generate"):
prompt_gen = gr.Textbox(label="Prompt", lines=2, placeholder="A photorealistic ginger cat astronaut on Mars")
btn_gen = gr.Button("Generate 🚀")
gallery_gen = gr.Gallery(columns=2, height="auto")
btn_gen.click(
generate,
inputs=[api, prompt_gen, n_slider, size, quality, out_fmt, compression, transparent],
outputs=gallery_gen,
)
# ----- Edit Tab ----- #
with gr.TabItem("Edit / Inpaint"):
img_edit = gr.Image(label="Image", type="numpy")
mask_canvas = gr.ImageMask(label="Mask – paint white where the image should change", type="numpy")
prompt_edit = gr.Textbox(label="Edit prompt", lines=2, placeholder="Replace the sky with a starry night")
btn_edit = gr.Button("Edit 🖌️")
gallery_edit = gr.Gallery(columns=2, height="auto")
btn_edit.click(
edit_image,
inputs=[api, img_edit, mask_canvas, prompt_edit, n_slider, size, quality, out_fmt, compression, transparent],
outputs=gallery_edit,
)
# ----- Variations Tab ----- #
with gr.TabItem("Variations"):
img_var = gr.Image(label="Source image", type="numpy")
btn_var = gr.Button("Variations 🔄")
gallery_var = gr.Gallery(columns=2, height="auto")
btn_var.click(
variation_image,
inputs=[api, img_var, n_slider, size, quality, out_fmt, compression, transparent],
outputs=gallery_var,
)
return demo
demo = build_ui()
if __name__ == "__main__":
demo.launch()
|