ZENLLC commited on
Commit
eafc253
·
verified ·
1 Parent(s): e850adf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import Owlv2Processor, Owlv2ForObjectDetection
4
+ import spaces
5
+
6
+ # Use GPU if available
7
+ if torch.cuda.is_available():
8
+ device = torch.device("cuda")
9
+ else:
10
+ device = torch.device("cpu")
11
+
12
+ # Load the OWLv2 model and processor
13
+ model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
14
+ processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
15
+
16
+ # Define default text queries relevant to home interior & renovation defects.
17
+ default_queries = (
18
+ "pipe defect, rust on pipe, cracked pipe, plastic pipe defect, metal pipe defect, "
19
+ "water damage on wall, mold on wall, broken sink, damaged cabinet, faulty door"
20
+ )
21
+
22
+ @spaces.GPU
23
+ def query_image(img, text_queries, score_threshold):
24
+ # Use default queries if none provided
25
+ if not text_queries.strip():
26
+ text_queries = default_queries
27
+ # Split and clean text queries into a list
28
+ queries = [q.strip() for q in text_queries.split(",") if q.strip()]
29
+
30
+ # Determine target size based on the image dimensions
31
+ size = max(img.shape[:2])
32
+ target_sizes = torch.Tensor([[size, size]])
33
+
34
+ # Process inputs
35
+ inputs = processor(text=queries, images=img, return_tensors="pt").to(device)
36
+
37
+ with torch.no_grad():
38
+ outputs = model(**inputs)
39
+
40
+ # Bring outputs to CPU and post-process them
41
+ outputs.logits = outputs.logits.cpu()
42
+ outputs.pred_boxes = outputs.pred_boxes.cpu()
43
+ results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
44
+ boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
45
+
46
+ result_labels = []
47
+ for box, score, label in zip(boxes, scores, labels):
48
+ if score < score_threshold:
49
+ continue
50
+ # OWLv2 returns label indices corresponding to the order of the input queries.
51
+ if label.item() < len(queries):
52
+ result_label = queries[label.item()]
53
+ else:
54
+ result_label = "unknown"
55
+ box = [int(i) for i in box.tolist()]
56
+ result_labels.append((box, result_label))
57
+
58
+ return img, result_labels
59
+
60
+ description = """
61
+ This demo uses OWLv2 for zero-shot object detection, specifically tailored for home interior and renovation defects.
62
+ Enter comma-separated text queries describing issues relevant to home renovations—for example:
63
+ "pipe defect, rust on pipe, cracked pipe, plastic pipe defect, metal pipe defect, water damage on wall, mold on wall, broken sink, damaged cabinet, faulty door".
64
+ If left blank, a default set of queries will be used.
65
+ """
66
+
67
+ demo = gr.Interface(
68
+ fn=query_image,
69
+ inputs=[
70
+ gr.Image(type="pil", label="Upload an Image"),
71
+ gr.Textbox(default=default_queries, label="Text Queries"),
72
+ gr.Slider(0, 1, value=0.1, label="Score Threshold")
73
+ ],
74
+ outputs=[gr.Image(label="Annotated Image"), "json"],
75
+ title="Zero-Shot Home Renovation Defect Detection with OWLv2",
76
+ description=description,
77
+ examples=[
78
+ # Replace these example paths with your sample images if available.
79
+ ["assets/pipe_sample.jpg", default_queries, 0.11],
80
+ ["assets/kitchen_renovation.jpg", default_queries, 0.1],
81
+ ],
82
+ )
83
+
84
+ demo.launch()