Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,54 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
from PIL import Image, ImageDraw
|
4 |
import gradio as gr
|
5 |
|
6 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
try:
|
8 |
-
# Convert the PIL image to
|
9 |
-
|
10 |
-
|
11 |
-
annotated = image.copy()
|
12 |
draw = ImageDraw.Draw(annotated)
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Apply Gaussian blur to reduce noise
|
18 |
-
blurred = cv2.GaussianBlur(
|
19 |
|
20 |
-
# Adaptive thresholding to highlight
|
21 |
thresh = cv2.adaptiveThreshold(
|
22 |
blurred, 255,
|
23 |
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
@@ -25,70 +56,50 @@ def detect_cracks(image: Image.Image):
|
|
25 |
11, 2
|
26 |
)
|
27 |
|
28 |
-
# Use morphological closing to
|
29 |
kernel = np.ones((3, 3), np.uint8)
|
30 |
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
31 |
|
32 |
-
#
|
33 |
edges = cv2.Canny(morph, 50, 150)
|
34 |
|
35 |
-
# Find contours
|
36 |
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
37 |
-
|
38 |
-
detections = [] # to hold detection details
|
39 |
|
40 |
for cnt in contours:
|
41 |
-
# Filter out small contours
|
42 |
-
if cv2.
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
# Simple heuristic: classify material based on brightness
|
54 |
-
# (These thresholds are arbitrary and should be tuned based on real data.)
|
55 |
-
if mean_intensity < 80:
|
56 |
-
material = "Concrete"
|
57 |
-
elif mean_intensity < 150:
|
58 |
-
material = "Tile"
|
59 |
-
else:
|
60 |
-
material = "Wood"
|
61 |
-
|
62 |
-
label = f"Crack ({material})"
|
63 |
-
detections.append(f"Detected crack at ({x}, {y}, {w}, {h}) on {material} (mean intensity: {mean_intensity:.1f})")
|
64 |
-
|
65 |
-
# Draw rectangle and label on the annotated image
|
66 |
-
draw.rectangle([x, y, x+w, y+h], outline="red", width=2)
|
67 |
-
# Draw the label above the rectangle
|
68 |
-
draw.text((x, y-10), label, fill="red")
|
69 |
|
70 |
-
#
|
71 |
if detections:
|
72 |
-
summary = "\n".join(detections)
|
73 |
else:
|
74 |
-
summary = "
|
75 |
|
76 |
return annotated, summary
|
77 |
-
|
78 |
except Exception as e:
|
79 |
print("Error during detection:", e)
|
80 |
return image, f"Error: {e}"
|
81 |
|
82 |
-
# Create a Gradio interface with two outputs: image and text
|
83 |
iface = gr.Interface(
|
84 |
-
fn=
|
85 |
-
inputs=gr.Image(type="pil", label="Upload
|
86 |
outputs=[gr.Image(label="Annotated Image"), gr.Textbox(label="Detection Summary")],
|
87 |
-
title="
|
88 |
description=(
|
89 |
-
"Upload an image of a
|
90 |
-
"
|
91 |
-
"This demo returns both an annotated image and a textual summary."
|
92 |
)
|
93 |
)
|
94 |
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
import gradio as gr
|
5 |
|
6 |
+
def classify_pipe_material(image_np):
|
7 |
+
"""
|
8 |
+
Heuristic to classify the overall pipe material based on the image's brightness.
|
9 |
+
Assumes that plastic pipes tend to be brighter and metal pipes darker.
|
10 |
+
"""
|
11 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
12 |
+
mean_intensity = np.mean(gray)
|
13 |
+
# If the mean intensity is high, assume plastic; otherwise, metal.
|
14 |
+
return "Plastic" if mean_intensity > 130 else "Metal"
|
15 |
+
|
16 |
+
def classify_defect(roi):
|
17 |
+
"""
|
18 |
+
Heuristic to classify the defect type within a region of interest (ROI).
|
19 |
+
This simple method uses the area and intensity variation (std deviation)
|
20 |
+
to differentiate between a crack (typically long and thin with high contrast)
|
21 |
+
and corrosion (possibly larger, more blob-like with different texture).
|
22 |
+
"""
|
23 |
+
area = roi.shape[0] * roi.shape[1]
|
24 |
+
std_intensity = np.std(roi)
|
25 |
+
# Adjust thresholds based on real-world testing.
|
26 |
+
if area < 5000 and std_intensity > 50:
|
27 |
+
return "Crack"
|
28 |
+
elif area >= 5000 and std_intensity > 40:
|
29 |
+
return "Corrosion"
|
30 |
+
else:
|
31 |
+
return "Other Defect"
|
32 |
+
|
33 |
+
def detect_pipe_issues(image: Image.Image):
|
34 |
try:
|
35 |
+
# Convert the PIL image to a NumPy array (RGB)
|
36 |
+
image_np = np.array(image)
|
37 |
+
annotated = image.copy() # Copy for annotation
|
|
|
38 |
draw = ImageDraw.Draw(annotated)
|
39 |
|
40 |
+
# Classify the overall pipe material
|
41 |
+
pipe_material = classify_pipe_material(image_np)
|
42 |
+
|
43 |
+
# Convert to grayscale and enhance contrast using CLAHE
|
44 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
45 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
46 |
+
enhanced = clahe.apply(gray)
|
47 |
|
48 |
# Apply Gaussian blur to reduce noise
|
49 |
+
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
|
50 |
|
51 |
+
# Adaptive thresholding to highlight potential defect areas
|
52 |
thresh = cv2.adaptiveThreshold(
|
53 |
blurred, 255,
|
54 |
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
|
|
56 |
11, 2
|
57 |
)
|
58 |
|
59 |
+
# Use morphological closing to connect fragmented areas
|
60 |
kernel = np.ones((3, 3), np.uint8)
|
61 |
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
62 |
|
63 |
+
# Detect edges with Canny
|
64 |
edges = cv2.Canny(morph, 50, 150)
|
65 |
|
66 |
+
# Find contours that might correspond to defects
|
67 |
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
68 |
+
detections = []
|
|
|
69 |
|
70 |
for cnt in contours:
|
71 |
+
# Filter out small contours to ignore noise
|
72 |
+
if cv2.contourArea(cnt) < 100:
|
73 |
+
continue
|
74 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
75 |
+
roi = enhanced[y:y+h, x:x+w]
|
76 |
+
defect_type = classify_defect(roi)
|
77 |
+
detection_info = f"{defect_type} at ({x}, {y}, {w}, {h})"
|
78 |
+
detections.append(detection_info)
|
79 |
+
|
80 |
+
# Draw bounding box and defect label
|
81 |
+
draw.rectangle([x, y, x+w, y+h], outline="red", width=2)
|
82 |
+
draw.text((x, y-10), defect_type, fill="red")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Prepare a textual summary including pipe material and all defect detections
|
85 |
if detections:
|
86 |
+
summary = f"Pipe Material: {pipe_material}\nDetected Issues:\n" + "\n".join(detections)
|
87 |
else:
|
88 |
+
summary = f"Pipe Material: {pipe_material}\nNo significant defects detected."
|
89 |
|
90 |
return annotated, summary
|
|
|
91 |
except Exception as e:
|
92 |
print("Error during detection:", e)
|
93 |
return image, f"Error: {e}"
|
94 |
|
|
|
95 |
iface = gr.Interface(
|
96 |
+
fn=detect_pipe_issues,
|
97 |
+
inputs=gr.Image(type="pil", label="Upload a Pipe Image"),
|
98 |
outputs=[gr.Image(label="Annotated Image"), gr.Textbox(label="Detection Summary")],
|
99 |
+
title="Pipe Defect Detector",
|
100 |
description=(
|
101 |
+
"Upload an image of a pipe to detect granular issues such as cracks or corrosion. "
|
102 |
+
"The app classifies the defect type and determines if the pipe material is plastic or metal."
|
|
|
103 |
)
|
104 |
)
|
105 |
|