Spaces:
Build error
Build error
File size: 1,680 Bytes
d4bbc03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
import numpy as np
import torch
from transformers import pipeline, AutoModel, AutoTokenizer
from monai.transforms import Compose, LoadImage, ScaleIntensity, EnsureChannelFirst
import SimpleITK as sitk
# 初始化组件
llm = pipeline("text-generation", model="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
seg_model = AutoModel.from_pretrained("Project-MONAI/model-zoo/hnfnet_brats21").eval()
# 医学图像预处理
preprocess = Compose([
LoadImage(image_only=True),
EnsureChannelFirst(channel_dim='no_channel'),
ScaleIntensity(minv=0.0, maxv=1.0)
])
def analyze_image(image_path, clinical_note):
# 生成分割提示
prompt = f"根据临床报告生成分割提示:{clinical_note}"
guidance = llm(prompt, max_length=200)[0]['generated_text']
# 图像处理
img = preprocess(image_path)
# 分割推理
with torch.no_grad():
seg = seg_model(img.unsqueeze(0))[0]
# 后处理
result = sitk.GetArrayFromImage(seg.squeeze().numpy())
return (result > 0.5).astype(np.uint8), guidance
# 创建交互界面
demo = gr.Interface(
fn=analyze_image,
inputs=[
gr.File(label="上传DICOM/NIfTI文件"),
gr.Textbox(label="临床描述", placeholder="输入影像学检查报告...")
],
outputs=[
gr.Image(label="分割结果", colormap="viridis"),
gr.Textbox(label="生成的分割提示")
],
examples=[
["assets/sample1.nii.gz", "左侧基底节区可见直径2cm占位,T1低信号,T2高信号"],
["assets/sample2.dcm", "右肺上叶结节,边缘毛刺,考虑恶性肿瘤可能"]
]
)
demo.launch()
|