Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import spaces
|
4 |
-
import sentencepiece
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
""
|
9 |
-
try:
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained("Yoxas/autotrain-phi3-statistical", trust_remote_code=True)
|
11 |
-
model = AutoModelForCausalLM.from_pretrained("Yoxas/autotrain-phi3-statistical", trust_remote_code=True)
|
12 |
-
except Exception as e:
|
13 |
-
print(f"Error loading model: {e}")
|
14 |
-
tokenizer = None
|
15 |
-
model = None
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
message,
|
20 |
-
history: list[tuple[str, str]],
|
21 |
-
system_message,
|
22 |
-
max_tokens,
|
23 |
-
temperature,
|
24 |
-
top_p,
|
25 |
-
):
|
26 |
-
if tokenizer is None or model is None:
|
27 |
-
yield "Error: Model not loaded properly."
|
28 |
-
return
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
messages.append({"role": "user", "content": val[0]})
|
35 |
-
if val[1]:
|
36 |
-
messages.append({"role": "assistant", "content": val[1]})
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
inputs = tokenizer(messages, return_tensors="pt", padding=True, truncation=True)
|
41 |
-
|
42 |
-
response = ""
|
43 |
-
|
44 |
-
for i in range(max_tokens):
|
45 |
-
try:
|
46 |
-
outputs = model.generate(inputs.input_ids, attention_mask=inputs.attention_mask, max_length=inputs.input_ids.shape[-1] + 1, temperature=temperature, top_p=top_p)
|
47 |
-
token = tokenizer.decode(outputs[0, -1:], skip_special_tokens=True)
|
48 |
-
|
49 |
-
response += token
|
50 |
-
yield response
|
51 |
-
except StopIteration:
|
52 |
-
break
|
53 |
-
|
54 |
-
"""
|
55 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
56 |
-
"""
|
57 |
-
demo = gr.ChatInterface(
|
58 |
-
respond,
|
59 |
-
additional_inputs=[
|
60 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
61 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
62 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
63 |
-
gr.Slider(
|
64 |
-
minimum=0.1,
|
65 |
-
maximum=1.0,
|
66 |
-
value=0.95,
|
67 |
-
step=0.05,
|
68 |
-
label="Top-p (nucleus sampling)",
|
69 |
-
),
|
70 |
-
],
|
71 |
-
)
|
72 |
-
|
73 |
-
if __name__ == "__main__":
|
74 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
|
3 |
|
4 |
+
# Load the tokenizer and model
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("Yoxas/autotrain-phi3-statistical", trust_remote_code=True)
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("Yoxas/autotrain-phi3-statistical", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Use a pipeline as a high-level helper
|
9 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Define the chatbot function
|
12 |
+
def chatbot(input_text):
|
13 |
+
response = pipe(input_text, max_length=150, num_return_sequences=1)
|
14 |
+
return response[0]['generated_text']
|
15 |
|
16 |
+
# Create the Gradio interface
|
17 |
+
interface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Research Paper Abstract Chatbot")
|
|
|
|
|
|
|
18 |
|
19 |
+
# Launch the Gradio app
|
20 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|