Spaces:
Runtime error
Runtime error
import gradio as gr | |
from datasets import load_dataset | |
import os | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
import torch | |
from threading import Thread | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
token = os.environ["HF_TOKEN"] | |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") | |
dataset = load_dataset("Yoxas/statistical_literacyv2") | |
data = dataset["train"] | |
# Convert the string embeddings to numerical arrays and ensure they are 2D | |
def convert_and_ensure_2d_embeddings(example): | |
# Clean the embedding string | |
embedding_str = example['embedding'] | |
embedding_str = embedding_str.replace('\n', ' ').replace('...', '') | |
embedding_list = list(map(float, embedding_str.strip("[]").split())) | |
embeddings = np.array(embedding_list, dtype=np.float32) | |
# Ensure the embeddings are 2-dimensional | |
if embeddings.ndim == 1: | |
embeddings = embeddings.reshape(1, -1) | |
return {'embedding': embeddings} | |
# Apply the function to ensure embeddings are 2-dimensional and of type float32 | |
data = data.map(convert_and_ensure_2d_embeddings) | |
# Flatten embeddings if they are nested 2D arrays | |
def flatten_embeddings(example): | |
embedding = example['embedding'] | |
if embedding.ndim == 2 and embedding.shape[0] == 1: | |
embedding = embedding.flatten() | |
return {'embedding': embedding} | |
data = data.map(flatten_embeddings) | |
# Ensure embeddings are in the correct shape for FAISS | |
embeddings = np.array(data['embedding'].tolist(), dtype=np.float32) | |
# Add FAISS index | |
data.add_faiss_index_from_external_arrays(embeddings) | |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
# use quantization to lower GPU usage | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
quantization_config=bnb_config, | |
token=token | |
) | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("") | |
] | |
SYS_PROMPT = """You are an assistant for answering questions. | |
You are given the extracted parts of a long document and a question. Provide a conversational answer. | |
If you don't know the answer, just say "I do not know." Don't make up an answer.""" | |
def search(query: str, k: int = 3): | |
"""a function that embeds a new query and returns the most probable results""" | |
embedded_query = ST.encode(query) # embed new query | |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results | |
"embedding", embedded_query, # compare our new embedded query with the dataset embeddings | |
k=k # get only top k results | |
) | |
return scores, retrieved_examples | |
def format_prompt(prompt, retrieved_documents, k): | |
"""using the retrieved documents we will prompt the model to generate our responses""" | |
PROMPT = f"Question:{prompt}\nContext:" | |
for idx in range(k): | |
PROMPT += f"{retrieved_documents['text'][idx]}\n" | |
return PROMPT | |
def talk(prompt, history): | |
k = 1 # number of retrieved documents | |
scores, retrieved_documents = search(prompt, k) | |
formatted_prompt = format_prompt(prompt, retrieved_documents, k) | |
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM | |
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}] | |
# tell the model to generate | |
input_ids = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(model.device) | |
outputs = model.generate( | |
input_ids, | |
max_new_tokens=1024, | |
eos_token_id=terminators, | |
do_sample=True, | |
temperature=0.6, | |
top_p=0.9, | |
) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
temperature=0.75, | |
eos_token_id=terminators, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
print(outputs) | |
yield "".join(outputs) | |
TITLE = "# RAG" | |
DESCRIPTION = """ | |
A rag pipeline with a chatbot feature | |
Resources used to build this project : | |
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1 | |
* dataset : https://huggingface.co/datasets/not-lain/wikipedia | |
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index | |
* chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct | |
""" | |
demo = gr.ChatInterface( | |
fn=talk, | |
chatbot=gr.Chatbot( | |
show_label=True, | |
show_share_button=True, | |
show_copy_button=True, | |
likeable=True, | |
layout="bubble", | |
bubble_full_width=False, | |
), | |
theme="Soft", | |
examples=[["what's anarchy ? "]], | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
demo.launch(debug=True) | |