File size: 4,877 Bytes
8b582d7
5cb1a88
b9fdcdb
5cb1a88
57eb8dd
5cb1a88
 
 
 
 
 
 
 
 
 
e03f71b
5cb1a88
2ea5896
7db0360
05284ce
 
 
7db0360
05284ce
7db0360
 
05284ce
 
 
d782baa
9e663fc
17a0d8a
d7bf8ce
7db0360
17a0d8a
 
 
d782baa
5cb1a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b582d7
5cb1a88
 
 
 
 
08fa5db
8b582d7
5cb1a88
0853b21
5cb1a88
 
 
 
 
 
 
 
8b582d7
 
5cb1a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from datasets import load_dataset
import numpy as np
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import time

token = os.environ["HF_TOKEN"]
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")

dataset = load_dataset("Yoxas/statistical_literacyv2")

data = dataset["train"]

# Convert the list to a numpy array
embeddings_array = np.array(data["Abstract_Embeddings"])

# Check the shape of the embeddings
print(embeddings_array.shape)

# Reshape the embeddings if necessary
if len(embeddings_array.shape) == 1:
    embeddings_array = embeddings_array.reshape(-1, 1)

# Create a new Dataset with the modified data
new_data = data.remove_columns("Abstract_Embeddings")
embeddings_array = np.array(data["Abstract_Embeddings"])
new_data = new_data.add_column("Abstract_Embeddings", embeddings_array.tolist())

# Convert the column to a numpy array
new_data.set_format("numpy", columns=["Abstract_Embeddings"])

new_data = new_data.add_faiss_index("Abstract_Embeddings")


model_id = "meta-llama/Meta-Llama-3-8B-Instruct"

# use quantization to lower GPU usage
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(model_id,token=token)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=bnb_config,
    token=token
)
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""



def search(query: str, k: int = 3 ):
    """a function that embeds a new query and returns the most probable results"""
    embedded_query = ST.encode(query) # embed new query
    scores, retrieved_examples = data.get_nearest_examples( # retrieve results
        "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
        k=k # get only top k results
    )
    return scores, retrieved_examples

def format_prompt(prompt,retrieved_documents,k):
    """using the retrieved documents we will prompt the model to generate our responses"""
    PROMPT = f"Question:{prompt}\nContext:"
    for idx in range(k) :
        PROMPT+= f"{retrieved_documents['text'][idx]}\n"
    return PROMPT


@spaces.GPU(duration=150)
def talk(prompt,history):
    k = 1 # number of retrieved documents
    scores , retrieved_documents = search(prompt, k)
    formatted_prompt = format_prompt(prompt,retrieved_documents,k)
    formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
    messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
    # tell the model to generate
    input_ids = tokenizer.apply_chat_template(
      messages,
      add_generation_prompt=True,
      return_tensors="pt"
    ).to(model.device)
    outputs = model.generate(
      input_ids,
      max_new_tokens=1024,
      eos_token_id=terminators,
      do_sample=True,
      temperature=0.6,
      top_p=0.9,
    )
    streamer = TextIteratorStreamer(
            tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
        )
    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        top_p=0.95,
        temperature=0.75,
        eos_token_id=terminators,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        print(outputs)
        yield "".join(outputs)


TITLE = "# RAG"

DESCRIPTION = """
A rag pipeline with a chatbot feature
Resources used to build this project :
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
* dataset : https://huggingface.co/datasets/not-lain/wikipedia
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index 
* chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
"""


demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["what's anarchy ? "]],
    title=TITLE,
    description=DESCRIPTION,
    
)
demo.launch(debug=True)