Spaces:
Runtime error
Runtime error
File size: 4,877 Bytes
8b582d7 5cb1a88 b9fdcdb 5cb1a88 57eb8dd 5cb1a88 e03f71b 5cb1a88 2ea5896 7db0360 05284ce 7db0360 05284ce 7db0360 05284ce d782baa 9e663fc 17a0d8a d7bf8ce 7db0360 17a0d8a d782baa 5cb1a88 8b582d7 5cb1a88 08fa5db 8b582d7 5cb1a88 0853b21 5cb1a88 8b582d7 5cb1a88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
from datasets import load_dataset
import numpy as np
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import time
token = os.environ["HF_TOKEN"]
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
dataset = load_dataset("Yoxas/statistical_literacyv2")
data = dataset["train"]
# Convert the list to a numpy array
embeddings_array = np.array(data["Abstract_Embeddings"])
# Check the shape of the embeddings
print(embeddings_array.shape)
# Reshape the embeddings if necessary
if len(embeddings_array.shape) == 1:
embeddings_array = embeddings_array.reshape(-1, 1)
# Create a new Dataset with the modified data
new_data = data.remove_columns("Abstract_Embeddings")
embeddings_array = np.array(data["Abstract_Embeddings"])
new_data = new_data.add_column("Abstract_Embeddings", embeddings_array.tolist())
# Convert the column to a numpy array
new_data.set_format("numpy", columns=["Abstract_Embeddings"])
new_data = new_data.add_faiss_index("Abstract_Embeddings")
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# use quantization to lower GPU usage
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id,token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=bnb_config,
token=token
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
def search(query: str, k: int = 3 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = ST.encode(query) # embed new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
def format_prompt(prompt,retrieved_documents,k):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
return PROMPT
@spaces.GPU(duration=150)
def talk(prompt,history):
k = 1 # number of retrieved documents
scores , retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
# tell the model to generate
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
temperature=0.75,
eos_token_id=terminators,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
TITLE = "# RAG"
DESCRIPTION = """
A rag pipeline with a chatbot feature
Resources used to build this project :
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
* dataset : https://huggingface.co/datasets/not-lain/wikipedia
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index
* chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
"""
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what's anarchy ? "]],
title=TITLE,
description=DESCRIPTION,
)
demo.launch(debug=True)
|