Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,129 +1,85 @@
|
|
1 |
-
import
|
2 |
import re
|
3 |
import pandas as pd
|
4 |
from PyPDF2 import PdfReader
|
5 |
-
from transformers import pipeline,
|
6 |
-
from gradio import Interface, File
|
7 |
import gradio as gr
|
8 |
-
import
|
9 |
|
10 |
-
#
|
11 |
-
data = []
|
12 |
-
|
13 |
-
# Load the LED tokenizer and model
|
14 |
led_tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
|
15 |
-
classifier = pipeline("text-classification", model="allenai/led-base-16384-multi_lexsum-source-long", tokenizer=led_tokenizer, framework="pt")
|
16 |
-
|
17 |
-
# Load the summarization model and tokenizer
|
18 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Function to clean text by keeping only alphanumeric characters and spaces
|
21 |
def clean_text(text):
|
22 |
return re.sub(r'[^a-zA-Z0-9\s]', '', text)
|
23 |
-
|
24 |
# Function to extract text from PDF files
|
25 |
def extract_text(pdf_file):
|
26 |
try:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
text += page.extract_text() or ''
|
34 |
-
return text
|
35 |
except Exception as e:
|
36 |
print(f"Error extracting text from {pdf_file}: {e}")
|
37 |
return None
|
38 |
|
39 |
-
# Function to
|
40 |
-
def
|
41 |
-
|
42 |
-
for i in range(0, len(words), chunk_size):
|
43 |
-
yield ' '.join(words[i:i + chunk_size])
|
44 |
|
45 |
-
# Function to
|
46 |
-
@spaces.GPU
|
47 |
-
def
|
48 |
-
|
49 |
-
return classifier(text)[0]['label']
|
50 |
-
except IndexError:
|
51 |
-
return "Unable to classify"
|
52 |
-
|
53 |
-
# Function to summarize text using the summarizer model
|
54 |
-
@spaces.GPU(duration=120)
|
55 |
-
def summarize_text(text, max_length=100, min_length=30):
|
56 |
-
try:
|
57 |
-
return summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text']
|
58 |
-
except IndexError:
|
59 |
-
return "Unable to summarize"
|
60 |
|
61 |
# Function to extract a title-like summary from the beginning of the text
|
62 |
-
@spaces.GPU
|
63 |
-
def extract_title(text
|
64 |
-
|
65 |
-
return summarizer(text, max_length=max_length, min_length=5, do_sample=False)[0]['summary_text']
|
66 |
-
except IndexError:
|
67 |
-
return "Unable to extract title"
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
# Define the Gradio interface for file upload and download
|
73 |
-
@spaces.GPU(duration=120)
|
74 |
def process_files(pdf_files):
|
|
|
75 |
for pdf_file in pdf_files:
|
76 |
text = extract_text(pdf_file)
|
77 |
-
|
78 |
-
# Skip encrypted files
|
79 |
if text is None:
|
80 |
continue
|
81 |
|
82 |
-
|
83 |
-
title_text = ' '.join(text.split()[:512]) # Take the first 512 tokens for title extraction
|
84 |
title = extract_title(title_text)
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
combined_cleaned_text = []
|
89 |
-
|
90 |
-
# Split text into chunks and process each chunk
|
91 |
-
for chunk in split_text(text, chunk_size=512):
|
92 |
-
# Summarize the text chunk
|
93 |
-
abstract = summarize_text(chunk)
|
94 |
-
combined_abstract.append(abstract)
|
95 |
-
|
96 |
-
# Clean the text chunk
|
97 |
-
cleaned_text = clean_text(chunk)
|
98 |
-
combined_cleaned_text.append(cleaned_text)
|
99 |
|
100 |
-
|
101 |
-
final_abstract = ' '.join(combined_abstract)
|
102 |
-
final_cleaned_text = ' '.join(combined_cleaned_text)
|
103 |
|
104 |
-
# Append the data to the list
|
105 |
-
data.append([title, final_abstract, final_cleaned_text])
|
106 |
-
|
107 |
-
# Create a DataFrame from the data list
|
108 |
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content'])
|
109 |
-
|
110 |
-
# Save the DataFrame to a CSV file
|
111 |
output_file_path = 'processed_pdfs.csv'
|
112 |
df.to_csv(output_file_path, index=False)
|
113 |
-
|
114 |
return output_file_path
|
115 |
-
|
116 |
# Gradio interface
|
117 |
-
pdf_input = gr.File(label="Upload PDF Files",
|
118 |
-
csv_output = gr.File(label="Download CSV")
|
119 |
|
120 |
gr.Interface(
|
121 |
-
fn=process_files,
|
122 |
-
inputs=pdf_input,
|
123 |
outputs=csv_output,
|
124 |
title="Dataset creation",
|
125 |
description="Upload PDF files and get a summarized CSV file.",
|
126 |
-
article="""<p>This
|
127 |
-
<p>
|
128 |
-
<p>The output file is a CSV with 3 columns: title, abstract, and content.</p>"""
|
129 |
).launch(share=True)
|
|
|
1 |
+
import torch
|
2 |
import re
|
3 |
import pandas as pd
|
4 |
from PyPDF2 import PdfReader
|
5 |
+
from transformers import AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
|
|
|
6 |
import gradio as gr
|
7 |
+
import space
|
8 |
|
9 |
+
# Load the tokenizer and model
|
|
|
|
|
|
|
10 |
led_tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
|
|
|
|
|
|
|
11 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
|
12 |
|
13 |
+
# Load the model separately
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
|
15 |
+
|
16 |
+
# Move the model to CUDA if available
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
model = model.to("cuda")
|
19 |
+
|
20 |
# Function to clean text by keeping only alphanumeric characters and spaces
|
21 |
def clean_text(text):
|
22 |
return re.sub(r'[^a-zA-Z0-9\s]', '', text)
|
23 |
+
|
24 |
# Function to extract text from PDF files
|
25 |
def extract_text(pdf_file):
|
26 |
try:
|
27 |
+
with open(pdf_file, 'rb') as file:
|
28 |
+
pdf_reader = PdfReader(file)
|
29 |
+
if pdf_reader.is_encrypted:
|
30 |
+
print(f"Skipping encrypted file: {pdf_file}")
|
31 |
+
return None
|
32 |
+
return ' '.join(page.extract_text() or '' for page in pdf_reader.pages)
|
|
|
|
|
33 |
except Exception as e:
|
34 |
print(f"Error extracting text from {pdf_file}: {e}")
|
35 |
return None
|
36 |
|
37 |
+
# Function to classify text using LED model in batches
|
38 |
+
def classify_texts(texts):
|
39 |
+
return [classifier(text)["label"] for text in texts]
|
|
|
|
|
40 |
|
41 |
+
# Function to summarize text using the summarizer model in batches
|
42 |
+
@spaces.GPU
|
43 |
+
def summarize_texts(texts):
|
44 |
+
return [summarizer(text, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] for text in texts]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Function to extract a title-like summary from the beginning of the text
|
47 |
+
@spaces.GPU
|
48 |
+
def extract_title(text):
|
49 |
+
return summarizer(text, max_length=20, min_length=5, do_sample=False)[0]['summary_text']
|
|
|
|
|
|
|
50 |
|
51 |
+
# Function to process PDF files
|
52 |
+
@spaces.GPU
|
|
|
|
|
|
|
53 |
def process_files(pdf_files):
|
54 |
+
data = []
|
55 |
for pdf_file in pdf_files:
|
56 |
text = extract_text(pdf_file)
|
|
|
|
|
57 |
if text is None:
|
58 |
continue
|
59 |
|
60 |
+
title_text = text.split(maxsplit=512)[0]
|
|
|
61 |
title = extract_title(title_text)
|
62 |
|
63 |
+
# Clean the entire text at once
|
64 |
+
cleaned_text = clean_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
data.append([title, summarize_texts([cleaned_text])[0], cleaned_text])
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
68 |
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content'])
|
|
|
|
|
69 |
output_file_path = 'processed_pdfs.csv'
|
70 |
df.to_csv(output_file_path, index=False)
|
|
|
71 |
return output_file_path
|
72 |
+
|
73 |
# Gradio interface
|
74 |
+
pdf_input = gr.Interface.inputs.File(label="Upload PDF Files", type="file", multiple=True)
|
75 |
+
csv_output = gr.Interface.outputs.File(label="Download CSV")
|
76 |
|
77 |
gr.Interface(
|
78 |
+
fn=process_files,
|
79 |
+
inputs=pdf_input,
|
80 |
outputs=csv_output,
|
81 |
title="Dataset creation",
|
82 |
description="Upload PDF files and get a summarized CSV file.",
|
83 |
+
article="""<p>This app creates a dataset from research papers using AI models.</p>
|
84 |
+
<p>It uses models for classification and summarization to extract titles, abstracts, and content from PDFs.</p>"""
|
|
|
85 |
).launch(share=True)
|