Sharp-It / app.py
YiftachEde's picture
add
017eabf
raw
history blame
23.5 kB
import os
# this is a HF Spaces specific hack, as
# (i) building pytorch3d with GPU support is a bit tricky here
# (ii) installing the wheel via requirements.txt breaks ZeroGPU
import spaces
# Use the dynamic approach from PyTorch3D documentation to determine the correct wheel
import sys
import torch
# Install iopath first as it's a dependency
os.system("pip install iopath")
# Dynamically determine the correct wheel URL based on Python and PyTorch versions
pyt_version_str = torch.__version__.split("+")[0].replace(".", "")
cuda_version_str = torch.version.cuda.replace(".", "") if torch.cuda.is_available() else "cpu"
version_str = f"py3{sys.version_info.minor}_cu{cuda_version_str}_pyt{pyt_version_str}"
print(f"Looking for PyTorch3D wheel for: {version_str}")
os.system(f"pip install \"git+https://github.com/facebookresearch/pytorch3d.git\"")
# If the wheel installation fails, try installing from source
try:
import pytorch3d
print("PyTorch3D installed successfully from wheel")
except ImportError:
print("Wheel not found, attempting to install PyTorch3D from source")
os.system('pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"')
try:
import pytorch3d
print("PyTorch3D installed successfully from source")
except ImportError:
print("WARNING: Could not install PyTorch3D. Some functionality may be limited.")
# Continue without PyTorch3D - the app will need to handle missing functionality
import torch
import torch.nn as nn
import gradio as gr
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from einops import rearrange
from shap_e.diffusion.sample import sample_latents
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.models.download import load_model, load_config
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images
from shap_e.models.nn.camera import DifferentiableCameraBatch, DifferentiableProjectiveCamera
import math
import time
from requests.exceptions import ReadTimeout, ConnectionError
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
spherical_camera_pose
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground
def create_custom_cameras(size: int, device: torch.device, azimuths: list, elevations: list,
fov_degrees: float, distance: float) -> DifferentiableCameraBatch:
# Object is in a 2x2x2 bounding box (-1 to 1 in each dimension)
object_diagonal = distance # Correct diagonal calculation for the cube
# Calculate radius based on object size and FOV
fov_radians = math.radians(fov_degrees)
radius = (object_diagonal / 2) / math.tan(fov_radians / 2) # Correct radius calculation
origins = []
xs = []
ys = []
zs = []
for azimuth, elevation in zip(azimuths, elevations):
azimuth_rad = np.radians(azimuth-90)
elevation_rad = np.radians(elevation)
# Calculate camera position
x = radius * np.cos(elevation_rad) * np.cos(azimuth_rad)
y = radius * np.cos(elevation_rad) * np.sin(azimuth_rad)
z = radius * np.sin(elevation_rad)
origin = np.array([x, y, z])
# Calculate camera orientation
z_axis = -origin / np.linalg.norm(origin) # Point towards center
x_axis = np.array([-np.sin(azimuth_rad), np.cos(azimuth_rad), 0])
y_axis = np.cross(z_axis, x_axis)
origins.append(origin)
zs.append(z_axis)
xs.append(x_axis)
ys.append(y_axis)
return DifferentiableCameraBatch(
shape=(1, len(origins)),
flat_camera=DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(origins, axis=0)).float().to(device),
x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device),
y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device),
z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device),
width=size,
height=size,
x_fov=fov_radians,
y_fov=fov_radians,
),
)
def load_models():
"""Initialize and load all required models"""
config = OmegaConf.load('configs/instant-nerf-large-best.yaml')
model_config = config.model_config
infer_config = config.infer_config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load diffusion pipeline with retry logic
print('Loading diffusion pipeline...')
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
local_files_only=False,
resume_download=True,
)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download pipeline after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# Modify UNet to handle 8 input channels instead of 4
in_channels = 8
out_channels = pipeline.unet.conv_in.out_channels
pipeline.unet.register_to_config(in_channels=in_channels)
with torch.no_grad():
new_conv_in = nn.Conv2d(
in_channels, out_channels, pipeline.unet.conv_in.kernel_size,
pipeline.unet.conv_in.stride, pipeline.unet.conv_in.padding
)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(pipeline.unet.conv_in.weight)
pipeline.unet.conv_in = new_conv_in
# Load custom UNet with retry logic
print('Loading custom UNet...')
for attempt in range(max_retries):
try:
pipeline.unet = pipeline.unet.from_pretrained(
"YiftachEde/Sharp-It",
local_files_only=False,
resume_download=True,
).to(torch.float16)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download UNet after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
pipeline = pipeline.to(device).to(torch_dtype=torch.float16)
# Load reconstruction model with retry logic
print('Loading reconstruction model...')
model = instantiate_from_config(model_config)
for attempt in range(max_retries):
try:
model_path = hf_hub_download(
repo_id="TencentARC/InstantMesh",
filename="instant_nerf_large.ckpt",
repo_type="model",
local_files_only=False,
resume_download=True,
cache_dir="model_cache" # Use a specific cache directory
)
break
except (ReadTimeout, ConnectionError) as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to download model after {max_retries} attempts: {str(e)}")
print(f"Download attempt {attempt + 1} failed, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
state_dict = torch.load(model_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items()
if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
return pipeline, model, infer_config
@spaces.GPU(duration=20)
def process_images(input_images, prompt, steps=75, guidance_scale=7.5, pipeline=None):
"""Process input images and run refinement"""
device = pipeline.device
if isinstance(input_images, list):
if len(input_images) == 1:
# Check if this is a pre-arranged layout
img = Image.open(input_images[0].name).convert('RGB')
if img.size == (640, 960):
# This is already a layout, use it directly
input_image = img
else:
# Single view - need 6 copies
img = img.resize((320, 320))
img_array = np.array(img) / 255.0
images = [img_array] * 6
images = np.stack(images)
# Convert to tensor and create layout
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
images = images.reshape(3, 2, 3, 320, 320)
images = images.permute(0, 2, 3, 1, 4)
images = images.reshape(3, 3, 320, 640)
images = images.reshape(1, 3, 960, 640)
# Convert back to PIL
images = images.permute(0, 2, 3, 1)[0]
images = (images.numpy() * 255).astype(np.uint8)
input_image = Image.fromarray(images)
else:
# Multiple individual views
images = []
for img_file in input_images:
img = Image.open(img_file.name).convert('RGB')
img = img.resize((320, 320))
img = np.array(img) / 255.0
images.append(img)
# Pad to 6 images if needed
while len(images) < 6:
images.append(np.zeros_like(images[0]))
images = np.stack(images[:6])
# Convert to tensor and create layout
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
images = images.reshape(3, 2, 3, 320, 320)
images = images.permute(0, 2, 3, 1, 4)
images = images.reshape(3, 3, 320, 640)
images = images.reshape(1, 3, 960, 640)
# Convert back to PIL
images = images.permute(0, 2, 3, 1)[0]
images = (images.numpy() * 255).astype(np.uint8)
input_image = Image.fromarray(images)
else:
raise ValueError("Expected a list of images")
# Generate refined output
output = pipeline.refine(
input_image,
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale
).images[0]
return output, input_image
@spaces.GPU(duration=20)
def create_mesh(refined_image, model, infer_config):
"""Generate mesh from refined image"""
# Convert PIL image to tensor
image = np.array(refined_image) / 255.0
image = torch.from_numpy(image).float().permute(2, 0, 1)
# Reshape to 6 views
image = image.reshape(3, 960, 640)
image = image.reshape(3, 3, 320, 640)
image = image.permute(1, 0, 2, 3)
image = image.reshape(3, 3, 320, 2, 320)
image = image.permute(0, 3, 1, 2, 4)
image = image.reshape(6, 3, 320, 320)
# Add batch dimension
image = image.unsqueeze(0)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to("cuda")
image = image.to("cuda")
with torch.no_grad():
planes = model.forward_planes(image, input_cameras)
mesh_out = model.extract_mesh(planes, **infer_config)
vertices, faces, vertex_colors = mesh_out
return vertices, faces, vertex_colors
class ShapERenderer:
def __init__(self, device):
print("Initializing Shap-E models...")
self.device = device
torch.cuda.empty_cache() # Clear GPU memory before loading
self.xm = load_model('transmitter', device=self.device)
self.model = load_model('text300M', device=self.device)
self.diffusion = diffusion_from_config(load_config('diffusion'))
print("Shap-E models initialized!")
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
try:
torch.cuda.empty_cache() # Clear GPU memory before generation
# Generate latents using the text-to-3D model
batch_size = 1
guidance_scale = float(guidance_scale)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
latents = sample_latents(
batch_size=batch_size,
model=self.model,
diffusion=self.diffusion,
guidance_scale=guidance_scale,
model_kwargs=dict(texts=[prompt] * batch_size),
progress=True,
clip_denoised=True,
use_fp16=True,
use_karras=True,
karras_steps=num_steps,
sigma_min=1e-3,
sigma_max=160,
s_churn=0,
)
# Render the 6 views we need with specific viewing angles
size = 320 # Size of each rendered image
images = []
# Define our 6 specific camera positions to match refine.py
azimuths = [30, 90, 150, 210, 270, 330]
elevations = [20, -10, 20, -10, 20, -10]
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
rendered_image = decode_latent_images(
self.xm,
latents[0],
cameras=cameras,
rendering_mode='stf'
)
images.append(rendered_image[0])
torch.cuda.empty_cache() # Clear GPU memory after each view
# Convert images to uint8
images = [np.array(image) for image in images]
# Create 2x3 grid layout (640x960)
layout = np.zeros((960, 640, 3), dtype=np.uint8)
for i, img in enumerate(images):
row = i // 2
col = i % 2
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
return Image.fromarray(layout), images
except Exception as e:
print(f"Error in generate_views: {e}")
torch.cuda.empty_cache() # Clear GPU memory on error
raise
class RefinerInterface:
def __init__(self):
print("Initializing InstantMesh models...")
torch.cuda.empty_cache() # Clear GPU memory before loading
self.pipeline, self.model, self.infer_config = load_models()
print("InstantMesh models initialized!")
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
"""Main refinement function"""
try:
torch.cuda.empty_cache() # Clear GPU memory before processing
# Process image and get refined output
input_image = Image.fromarray(input_image)
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
if input_image.width == 960 and input_image.height == 640:
# Transpose the image to get 960x640 layout
input_array = np.array(input_image)
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
# Rearrange from 2x3 to 3x2
for i in range(6):
src_row = i // 3
src_col = i % 3
dst_row = i // 2
dst_col = i % 2
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
input_image = Image.fromarray(new_layout)
# Process with the pipeline (expects 960x640)
with torch.amp.autocast('cuda'): # Use automatic mixed precision
refined_output_960x640 = self.pipeline.refine(
input_image,
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale
).images[0]
torch.cuda.empty_cache() # Clear GPU memory after refinement
# Generate mesh using the 960x640 format
with torch.amp.autocast('cuda'): # Use automatic mixed precision
vertices, faces, vertex_colors = create_mesh(
refined_output_960x640,
self.model,
self.infer_config
)
torch.cuda.empty_cache() # Clear GPU memory after mesh generation
# Save temporary mesh file
os.makedirs("temp", exist_ok=True)
temp_obj = os.path.join("temp", "refined_mesh.obj")
save_obj(vertices, faces, vertex_colors, temp_obj)
# Convert the output to 640x960 for display
refined_array = np.array(refined_output_960x640)
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
# Rearrange from 3x2 to 2x3
for i in range(6):
src_row = i // 2
src_col = i % 2
dst_row = i // 2
dst_col = i % 2
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
refined_output_640x960 = Image.fromarray(display_layout)
return refined_output_640x960, temp_obj
except Exception as e:
print(f"Error in refine_model: {e}")
torch.cuda.empty_cache() # Clear GPU memory on error
raise
def create_demo():
print("Initializing models...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize models at startup
shap_e = ShapERenderer(device)
refiner = RefinerInterface()
print("All models initialized!")
with gr.Blocks() as demo:
gr.Markdown("# Shap-E to InstantMesh Pipeline")
# First row: Controls
with gr.Row():
with gr.Column():
# Shap-E inputs
shape_prompt = gr.Textbox(
label="Shap-E Prompt",
placeholder="Enter text to generate initial 3D model..."
)
shape_guidance = gr.Slider(
minimum=1,
maximum=30,
value=15.0,
label="Shap-E Guidance Scale"
)
shape_steps = gr.Slider(
minimum=16,
maximum=128,
value=64,
step=16,
label="Shap-E Steps"
)
generate_btn = gr.Button("Generate Views")
with gr.Column():
# Refinement inputs
refine_prompt = gr.Textbox(
label="Refinement Prompt",
placeholder="Enter prompt to guide refinement..."
)
refine_steps = gr.Slider(
minimum=30,
maximum=100,
value=75,
step=1,
label="Refinement Steps"
)
refine_guidance = gr.Slider(
minimum=1,
maximum=20,
value=7.5,
label="Refinement Guidance Scale"
)
refine_btn = gr.Button("Refine")
error_output = gr.Textbox(label="Status/Error Messages", interactive=False)
# Second row: Image panels side by side
with gr.Row():
# Outputs - Images side by side
shape_output = gr.Image(
label="Generated Views",
width=640,
height=960
)
refined_output = gr.Image(
label="Refined Output",
width=640,
height=960
)
# Third row: 3D mesh panel below
with gr.Row():
# 3D mesh centered
mesh_output = gr.Model3D(
label="3D Mesh",
clear_color=[1.0, 1.0, 1.0, 1.0],
)
# Set up event handlers
@spaces.GPU(duration=20) # Reduced duration to 20 seconds
def generate(prompt, guidance_scale, num_steps):
try:
torch.cuda.empty_cache() # Clear GPU memory before starting
with torch.no_grad():
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
return layout, None # Return None for error message
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
error_msg = f"Error during generation: {str(e)}"
print(error_msg)
return None, error_msg
@spaces.GPU(duration=20) # Reduced duration to 20 seconds
def refine(input_image, prompt, steps, guidance_scale):
try:
torch.cuda.empty_cache() # Clear GPU memory before starting
refined_img, mesh_path = refiner.refine_model(
input_image,
prompt,
steps,
guidance_scale
)
return refined_img, mesh_path, None # Return None for error message
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
error_msg = f"Error during refinement: {str(e)}"
print(error_msg)
return None, None, error_msg
generate_btn.click(
fn=generate,
inputs=[shape_prompt, shape_guidance, shape_steps],
outputs=[shape_output, error_output]
)
refine_btn.click(
fn=refine,
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
outputs=[refined_output, mesh_output, error_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True)