File size: 7,156 Bytes
a1d8bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
from einops import rearrange
import imageio
import rembg
import torch
import numpy as np
import PIL.Image
from PIL import Image
from typing import Any
import torch
import random
from kiui.op import safe_normalize
import torch.nn.functional as F
from kiui.cam import orbit_camera

def get_rays(pose, h, w, fovy, opengl=True):

    x, y = torch.meshgrid(
        torch.arange(w, device=pose.device),
        torch.arange(h, device=pose.device),
        indexing="xy",
    )
    x = x.flatten()
    y = y.flatten()

    cx = w * 0.5
    cy = h * 0.5

    focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))

    camera_dirs = F.pad(
        torch.stack(
            [
                (x - cx + 0.5) / focal,
                (y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
            ],
            dim=-1,
        ),
        (0, 1),
        value=(-1.0 if opengl else 1.0),
    )  # [hw, 3]

    rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1)  # [hw, 3]
    rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) # [hw, 3]

    rays_o = rays_o.view(h, w, 3)
    rays_d = safe_normalize(rays_d).view(h, w, 3)

    return rays_o, rays_d

def prepare_default_rays(device, azimuths=0, B=1):
    fov = 30
    radius = (0.5 / np.tan(np.radians(fov/2)))
    cam_poses = []
    for azimuth in azimuths:
        if isinstance(azimuth, torch.Tensor):
            azimuth = azimuth.item()
        # azimuth = azimuth.item()
        cam_poses.append([
            orbit_camera(20, 30+azimuth, radius=radius),
            orbit_camera(-10, 90+azimuth, radius=radius),
            orbit_camera(20, 150+azimuth, radius=radius),
            orbit_camera(-10, 210+azimuth, radius=radius),
            orbit_camera(20, 270+azimuth, radius=radius),
            orbit_camera(-10, 330+azimuth, radius=radius),

        ])
    cam_poses = torch.from_numpy(np.stack(cam_poses)).reshape(-1, 4, 4).float().to(device)

    rays_embeddings = []
    for i in range(cam_poses.shape[0]):
        rays_o, rays_d = get_rays(cam_poses[i], 320//8, 320//8, 30) # [h, w, 3]
        rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
        rays_embeddings.append(rays_plucker)

        ## visualize rays for plotting figure
        # kiui.vis.plot_image(rays_d * 0.5 + 0.5, save=True)

    rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous().to(device) # [V, 6, h, w]
    rays_embeddings = rearrange(rays_embeddings, '(B x y) c h w -> B c (x h) (y w)', B=len(azimuths), x=3, y=2)    # (B, C, 3H, 2W)
    return rays_embeddings


class RandomCutout(object):
    """Randomly apply cutout to a batch of tensor images. The cutout is 3 times smaller than the image."""
    def __init__(self, height, width, cutout_prob=0.4):
        self.height = height
        self.width = width
        self.cutout_prob = cutout_prob
        self.mask_height = height // 3  # Cutout size 3 times smaller
        self.mask_width = width // 3

    def __call__(self, img, is_train=True):
        if not is_train:
            return img

        batch, channels, height, width = img.shape

        # Generate a random number for each image in the batch to decide cutout application
        random_seeds = torch.rand(batch, device=img.device)

        # Masks should start as ones (no cutout effect)
        masks = torch.ones((batch,  height, width), device=img.device, dtype=img.dtype)

        # Random coordinates for cutout
        top = torch.randint(low=height // 10, high=height - self.mask_height - height // 10, size=(batch,), device=img.device)
        left = torch.randint(low=width // 10, high=width - self.mask_width - width // 10, size=(batch,), device=img.device)

        # Create a range grid for height and width
        hh, ww = torch.meshgrid(torch.arange(0, height, device=img.device), torch.arange(0, width, device=img.device), indexing='ij')

        # Expand top and left to match batch dimensions for broadcasting
        top = top[:, None, None]
        left = left[:, None, None]

        # Create the cutout mask where cutouts should happen
        cutout_masks = (hh >= top) & (hh < top + self.mask_height) & (ww >= left) & (ww < left + self.mask_width)
        # Apply cutout_masks where random seeds fall below the probability
        masks[cutout_masks & (random_seeds[:, None, None] < self.cutout_prob)] = 0

        return img * masks[:,None]
    
def remove_background(image: PIL.Image.Image,
    rembg_session: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image


def resize_foreground(
    image: PIL.Image.Image,
    ratio: float,
) -> PIL.Image.Image:
    image = np.array(image)
    assert image.shape[-1] == 4
    alpha = np.where(image[..., 3] > 0)
    y1, y2, x1, x2 = (
        alpha[0].min(),
        alpha[0].max(),
        alpha[1].min(),
        alpha[1].max(),
    )
    # crop the foreground
    fg = image[y1:y2, x1:x2]
    # pad to square
    size = max(fg.shape[0], fg.shape[1])
    ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
    ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
    new_image = np.pad(
        fg,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )

    # compute padding according to the ratio
    new_size = int(new_image.shape[0] / ratio)
    # pad to size, double side
    ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
    ph1, pw1 = new_size - size - ph0, new_size - size - pw0
    new_image = np.pad(
        new_image,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )
    new_image = PIL.Image.fromarray(new_image)
    return new_image


def images_to_video(
    images: torch.Tensor, 
    output_path: str, 
    fps: int = 30,
) -> None:
    # images: (N, C, H, W)
    video_dir = os.path.dirname(output_path)
    video_name = os.path.basename(output_path)
    os.makedirs(video_dir, exist_ok=True)

    frames = []
    for i in range(len(images)):
        frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
        assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
            f"Frame shape mismatch: {frame.shape} vs {images.shape}"
        assert frame.min() >= 0 and frame.max() <= 255, \
            f"Frame value out of range: {frame.min()} ~ {frame.max()}"
        frames.append(frame)
    imageio.mimwrite(output_path, np.stack(frames), fps=fps, quality=10)


def save_video(
    frames: torch.Tensor,
    output_path: str,
    fps: int = 30,
) -> None:
    # images: (N, C, H, W)
    frames = [(frame.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) for frame in frames]
    writer = imageio.get_writer(output_path, fps=fps)
    for frame in frames:
        writer.append_data(frame)
    writer.close()