Spaces:
Sleeping
Sleeping
File size: 2,008 Bytes
02432dd b489942 02432dd b489942 02432dd 749237c 02432dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
st.set_page_config(page_title="MNIST Pixel Visualizer", layout="wide")
st.title("๐งฎ MNIST ํฝ์
๊ฐ ์๊ฐํ ๋ฐ๋ชจ")
st.markdown("""
์ฌ์ฉ์๊ฐ ์
๋ก๋ํ ํ๋ฐฑ ์ด๋ฏธ์ง๋ฅผ ํฝ์
๊ฐ์ผ๋ก ์๊ฐํํฉ๋๋ค.
- ํฝ์
๊ฐ์ 0~255 ๋ฒ์์ด๋ฉฐ, ๋ฐ๊ธฐ์ ๋ฐ๋ผ ํฐ์(255), ๊ฒ์์(0)์ผ๋ก ํ์๋ฉ๋๋ค.
- ํฝ์
๊ฐ๋ ์ด๋ฏธ์ง ์์ ์ซ์๋ก ํ์๋ฉ๋๋ค.
์์ MNIST ์ด๋ฏธ์ง๋ ํจ๊ป ์ ๊ณตํฉ๋๋ค.
""")
# ์์ ์ด๋ฏธ์ง ๋ก๋ (MNIST)
from tensorflow.keras.datasets import mnist
(x_train, y_train), _ = mnist.load_data()
example_index = st.selectbox("์์ ์ด๋ฏธ์ง ์ ํ (MNIST)", list(range(10)), format_func=lambda x: f"Label: {y_train[x]}")
example_image = x_train[example_index]
col1, col2 = st.columns(2)
with col1:
st.subheader("1. ์ด๋ฏธ์ง ์
๋ก๋ or ์์ ์ด๋ฏธ์ง ์ฌ์ฉ")
uploaded_file = st.file_uploader("ํ๋ฐฑ ์ด๋ฏธ์ง ํ์ผ ์
๋ก๋ (28x28 ๋๋ ๋ ํฐ ์ด๋ฏธ์ง)", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert('L') # ํ๋ฐฑ์ผ๋ก ๋ณํ
image = np.array(image)
st.image(image, caption="์
๋ก๋๋ ์ด๋ฏธ์ง", use_container_width=True)
else:
image = example_image
st.image(image, caption=f"์์ ์ด๋ฏธ์ง (Label: {y_train[example_index]})", use_container_width=True)
with col2:
st.subheader("2. ํฝ์
๊ฐ ์๊ฐํ ๊ฒฐ๊ณผ")
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(image, cmap='gray', vmin=0, vmax=255)
ax.set_xticks([])
ax.set_yticks([])
h, w = image.shape
for i in range(h):
for j in range(w):
val = image[i, j]
color = 'white' if val < 128 else 'black'
ax.text(j, i, str(val), ha='center', va='center', fontsize=6, color=color)
st.pyplot(fig)
st.markdown("""
---
๐จโ๐ป ๋ง๋ ์ฌ๋: ์ ์ํ | Upstage | AI Edu
""")
|