Spaces:
Running
Running
File size: 10,022 Bytes
572af8f e64bc37 572af8f 4a27ec5 572af8f 4a27ec5 afaacd2 572af8f 4a27ec5 572af8f c5e9417 572af8f 4a27ec5 e64bc37 4a27ec5 e64bc37 4a27ec5 afaacd2 4a27ec5 afaacd2 4a27ec5 afaacd2 c5e9417 4a27ec5 c5e9417 572af8f 6a16f9a 572af8f 4a27ec5 572af8f 4a27ec5 572af8f ff3fdac 572af8f f0c1731 572af8f 09c5b31 572af8f ff93220 9c90896 572af8f 4a27ec5 572af8f 3a51ba8 572af8f 4a27ec5 c5e9417 4a27ec5 c5e9417 4a27ec5 572af8f 3a51ba8 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 6fd73bb 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f 4a27ec5 572af8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import sys
import time
import subprocess
from importlib.metadata import version, PackageNotFoundError
try:
import spaces
except ImportError:
print("ZeroGPU is not available, skipping...")
import torch
import torchaudio
import torchaudio.transforms as T
import gradio as gr
from gradio.themes import Soft
from gradio.utils import is_zero_gpu_space
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
from torchaudio.models.decoder import ctc_decoder
try:
spaces_version = version("spaces")
print("ZeroGPU is available, changing inference call.")
except PackageNotFoundError:
spaces_version = "N/A"
print("ZeroGPU is not available, skipping...")
# Install kenlm
try:
res = subprocess.check_output(
"pip install https://github.com/kpu/kenlm/archive/master.zip --no-build-isolation",
stderr=subprocess.STDOUT,
shell=True,
)
print(res)
except Exception:
print("Cannot install kenlm")
use_zero_gpu = is_zero_gpu_space()
use_cuda = torch.cuda.is_available()
if use_cuda:
print("CUDA is available, setting correct inference_device variable.")
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
# Load the KenLM model
decoder = ctc_decoder(
lexicon="lm/model_lexicon.txt",
tokens="lm/model_tokens_w2v2.txt",
lm="lm/lm.binary",
nbest=1,
beam_size=100,
blank_token="<pad>",
)
# Config
model_name = "Yehor/w2v-bert-uk-v2.1-fp16"
min_duration = 0.5
max_duration = 60
concurrency_limit = 5
use_torch_compile = False
# Load the model
asr_model = AutoModelForCTC.from_pretrained(
model_name, torch_dtype=torch_dtype, device_map=device
)
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
if use_torch_compile:
asr_model = torch.compile(asr_model)
# Elements
examples = [
"example_1.wav",
"example_2.wav",
"example_3.wav",
"example_4.wav",
"example_5.wav",
"example_6.wav",
]
examples_table = """
| File | Text |
| ------------- | ------------- |
| `example_1.wav` | тема про яку не люблять говорити офіційні джерела у генштабі і міноборони це хімічна зброя окупанти вже тривалий час використовують хімічну зброю заборонену |
| `example_2.wav` | всіма конвенціями якщо спочатку це були гранати з дронів то тепер фіксують випадки застосування |
| `example_3.wav` | хімічних снарядів причому склад отруйної речовони різний а отже й наслідки для наших військових теж різні |
| `example_4.wav` | використовує на фронті все що має і хімічна зброя не вийняток тож з чим маємо справу розбиралася марія моганисян |
| `example_5.wav` | двох тисяч випадків застосування росіянами боєприпасів споряджених небезпечними хімічними речовинами |
| `example_6.wav` | на всі писані норми марія моганисян олександр моторний спецкор марафон єдині новини |
""".strip()
# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors
Follow them in social networks and **contact** if you need any help or have any questions:
| **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram |
| https://x.com/yehor_smoliakov at X |
| https://github.com/egorsmkv at GitHub |
| https://huggingface.co/Yehor at Hugging Face |
| or use [email protected] |
""".strip()
description_head = f"""
# Speech-to-Text for Ukrainian v2.1 with LM
This space uses https://huggingface.co/{model_name} and https://huggingface.co/Yehor/kenlm-uk/tree/main/news/lm-4gram-500k models to recognize audio files.
> Due to resource limitations, audio duration **must not** exceed **{max_duration}** seconds.
""".strip()
transcription_value = """
Recognized text will appear here.
Choose **an example file** below the Run button, upload **your audio file**, or use **the microphone** to record something.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
- Torch device: {device}
- Torch dtype: {torch_dtype}
- Use torch.compile: {use_torch_compile}
#### Models
##### Acoustic model (Speech-to-Text)
- Name: wav2vec2-bert
- URL: https://huggingface.co/Yehor/w2v-bert-uk-v2.1-fp16
##### Language model (Text-to-Text)
- Name: KenLM
- URL: https://huggingface.co/Yehor/kenlm-uk/tree/main/news/lm-4gram-500k
""".strip()
tech_libraries = f"""
#### Libraries
- torch: {version("torch")}
- torchaudio: {version("torchaudio")}
- transformers: {version("transformers")}
- accelerate: {version("accelerate")}
- gradio: {version("gradio")}
""".strip()
def inference(audio_path, progress=gr.Progress()):
if not audio_path:
raise gr.Error("Please upload an audio file.")
gr.Info("Starting...", duration=1)
progress(0, desc="Recognizing")
meta = torchaudio.info(audio_path)
duration = meta.num_frames / meta.sample_rate
if duration < min_duration:
raise gr.Error(
f"The duration of the file is less than {min_duration} seconds, it is {round(duration, 2)} seconds."
)
if duration > max_duration:
raise gr.Error(f"The duration of the file exceeds {max_duration} seconds.")
paths = [
audio_path,
]
results = []
for path in progress.tqdm(paths, desc="Recognizing...", unit="file"):
t0 = time.time()
meta = torchaudio.info(audio_path)
audio_duration = meta.num_frames / meta.sample_rate
audio_input, sr = torchaudio.load(path)
if meta.num_channels > 1:
audio_input = torch.mean(audio_input, dim=0, keepdim=True)
if meta.sample_rate != 16_000:
resampler = T.Resample(sr, 16_000, dtype=audio_input.dtype)
audio_input = resampler(audio_input)
audio_input = audio_input.squeeze().numpy()
features = processor([audio_input], sampling_rate=16_000).input_features
features = torch.tensor(features).to(device)
if torch_dtype == torch.float16:
features = features.half()
with torch.inference_mode():
logits = asr_model(features).logits
predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids)
# print("Greedy search:", predicted_ids)
# Decode using KenLM
decoded = decoder(logits.cpu().to(torch.float32))
batch_tokens = [decoder.idxs_to_tokens(hypo[0].tokens) for hypo in decoded]
transcripts = ["".join(tokens) for tokens in batch_tokens]
predictions = [it.replace("|", " ").strip() for it in transcripts]
# print("KenLM decoded:", predictions)
if not predictions:
predictions = "-"
elapsed_time = round(time.time() - t0, 2)
rtf = round(elapsed_time / audio_duration, 4)
audio_duration = round(audio_duration, 2)
results.append(
{
"path": path.split("/")[-1],
"transcription": "\n".join(predictions),
"audio_duration": audio_duration,
"rtf": rtf,
}
)
gr.Success("Finished!", duration=0.5)
result_texts = []
for result in results:
result_texts.append(f"**{result['path']}**")
result_texts.append("\n\n")
result_texts.append(f"> {result['transcription']}")
result_texts.append("\n\n")
result_texts.append(f"**Audio duration**: {result['audio_duration']}")
result_texts.append("\n")
result_texts.append(f"**Real-Time Factor**: {result['rtf']}")
return "\n".join(result_texts)
inference_func = inference
if use_zero_gpu:
inference_func = spaces.GPU(inference)
def create_app():
tab = gr.Blocks(
title="Speech-to-Text for Ukrainian",
analytics_enabled=False,
theme=Soft(),
)
with tab:
gr.Markdown(description_head)
gr.Markdown("## Usage")
with gr.Column():
audio_file = gr.Audio(label="Audio file", type="filepath")
transcription = gr.Markdown(
label="Transcription",
value=transcription_value,
)
gr.Button("Run").click(
inference_func,
concurrency_limit=concurrency_limit,
inputs=audio_file,
outputs=transcription,
)
with gr.Row():
gr.Examples(label="Choose an example", inputs=audio_file, examples=examples)
gr.Markdown(examples_table)
return tab
def create_env():
with gr.Blocks(theme=Soft()) as tab:
gr.Markdown(tech_env)
gr.Markdown(tech_libraries)
return tab
def create_authors():
with gr.Blocks(theme=Soft()) as tab:
gr.Markdown(authors_table)
return tab
def create_demo():
app_tab = create_app()
authors_tab = create_authors()
env_tab = create_env()
return gr.TabbedInterface(
[app_tab, authors_tab, env_tab],
tab_names=[
"🎙️ Recognition",
"👥 Authors",
"📦 Environment, Models, and Libraries",
],
)
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch()
|