File size: 4,720 Bytes
4878460
e120414
330b634
e120414
330b634
 
 
 
e120414
330b634
 
 
 
 
 
e120414
f04a169
330b634
 
 
 
f04a169
330b634
 
 
 
 
 
 
 
e6b49c3
 
 
 
 
330b634
e6b49c3
 
 
 
 
330b634
 
 
e120414
 
330b634
 
 
dd68e80
 
 
 
 
 
 
 
330b634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e120414
330b634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4878460
330b634
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import torch
from transformers.generation.streamers import TextIteratorStreamer
from PIL import Image
import requests
from io import BytesIO
from threading import Thread
import os

# 导入 LLaVA 相关模块
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token

# **确保 Hugging Face 缓存目录正确**
os.environ["HUGGINGFACE_HUB_CACHE"] = os.getcwd() + "/weights"

# **加载 LLaVA-1.5-13B**
disable_torch_init()
model_id = "Yanqing0327/LLaVA-project"  # 替换为你的 Hugging Face 模型仓库
tokenizer, model, image_processor, context_len = load_pretrained_model(
    model_id, model_name="llava-v1.5-13b", model_base=None, load_8bit=False, load_4bit=False
)

device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)

def load_image(image_file):
    """确保 image 是 `PIL.Image`"""
    if isinstance(image_file, Image.Image):
        return image_file.convert("RGB")  # 直接返回 `PIL.Image`

    elif isinstance(image_file, str) and (image_file.startswith('http') or image_file.startswith('https')):
        response = requests.get(image_file)
        return Image.open(BytesIO(response.content)).convert('RGB')

    else:  # 这里如果 `image_file` 是路径
        return Image.open(image_file).convert("RGB")


def llava_infer(image, text, temperature, top_p, max_tokens):
    """LLaVA 模型推理"""
    if image is None or text.strip() == "":
        return "请提供图片和文本输入"

    # 预处理图像
    image_data = load_image(image)
    image_tensor = image_processor.preprocess(image_data, return_tensors='pt')['pixel_values']

    # **确保数据在正确的设备上**
    image_tensor = image_tensor.to(device)
    if torch.cuda.is_available():
        image_tensor = image_tensor.half()  # GPU: 用 float16
    else:
        image_tensor = image_tensor.float()  # CPU: 用 float32

    # **处理对话**
    conv_mode = "llava_v1"
    conv = conv_templates[conv_mode].copy()

    # 生成输入文本,添加特殊 token
    inp = DEFAULT_IMAGE_TOKEN + '\n' + text
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)

    prompt = conv.get_prompt()
    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, timeout=20.0)

    # **执行推理**
    with torch.inference_mode():
        thread = Thread(target=model.generate, kwargs=dict(
            inputs=input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_tokens,
            streamer=streamer,
            use_cache=True
        ))
        thread.start()

        response = ""
        prepend_space = False
        for new_text in streamer:
            if new_text == " ":
                prepend_space = True
                continue
            if new_text.endswith(stop_str):
                new_text = new_text[:-len(stop_str)].strip()
                prepend_space = False
            elif prepend_space:
                new_text = " " + new_text
                prepend_space = False
            response += new_text
        if prepend_space:
            response += " "

        thread.join()
    
    return response


# **创建 Gradio Web 界面**
with gr.Blocks(title="LLaVA 1.5-13B Web UI") as demo:
    gr.Markdown("# 🌋 LLaVA-1.5-13B Web Interface")
    gr.Markdown("上传图片并输入文本,LLaVA 将返回回答")

    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(type="pil", label="上传图片")
            text_input = gr.Textbox(placeholder="输入文本...", label="输入文本")
            temperature = gr.Slider(0.0, 1.0, value=0.2, step=0.05, label="Temperature")
            top_p = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="Top P")
            max_tokens = gr.Slider(10, 1024, value=512, step=10, label="Max Tokens")
            submit_button = gr.Button("提交")

        with gr.Column(scale=7):
            chatbot_output = gr.Textbox(label="LLaVA 输出", interactive=False)

    submit_button.click(fn=llava_infer, inputs=[image_input, text_input, temperature, top_p, max_tokens], outputs=chatbot_output)

# **启动 Gradio Web 界面**
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)