Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
from smolagents import HfApiModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool | |
import pandas as pd | |
import tempfile | |
from pathlib import Path | |
import re | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- File Handling --- | |
def download_file_if_any(base_api_url: str, task_id: str) -> str | None: | |
url = f"{base_api_url}/files/{task_id}" | |
try: | |
resp = requests.get(url, timeout=30) | |
if resp.status_code == 404: | |
return None | |
resp.raise_for_status() | |
except requests.exceptions.HTTPError as e: | |
raise e | |
cdisp = resp.headers.get("content-disposition", "") | |
filename = task_id | |
if "filename=" in cdisp: | |
m = re.search(r'filename="([^\"]+)"', cdisp) | |
if m: | |
filename = m.group(1) | |
tmp_dir = Path(tempfile.gettempdir()) / "gaia_files" | |
tmp_dir.mkdir(exist_ok=True) | |
file_path = tmp_dir / filename | |
with open(file_path, "wb") as f: | |
f.write(resp.content) | |
return str(file_path) | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
model = HfApiModel( | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', | |
max_tokens=2096, | |
temperature=0.5, | |
custom_role_conversions=None, | |
) | |
self.agent = CodeAgent( | |
model=model, | |
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool()], | |
add_base_tools=True, | |
additional_authorized_imports=[] | |
) | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
try: | |
fixed_answer = self.agent.run(question) | |
print(f"Agent returning answer: {fixed_answer}") | |
return fixed_answer | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
return f"AGENT ERROR: {e}" | |
# --- Run and Submit --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = "l3xv/Final_Assignment_Template" | |
if profile: | |
username = f"{profile.username}" | |
else: | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
try: | |
file_path = download_file_if_any(api_url, task_id) | |
except Exception as e: | |
file_path = None | |
q_for_agent = f"{question_text}\n\n---\nFile: {file_path}\n---\n" if file_path else question_text | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(q_for_agent) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# --- UI --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Log in to your Hugging Face account. | |
2. Click the button to run the agent and submit answers. | |
3. Your score will be printed below. | |
""") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("Launching GAIA agent app...") | |
demo.launch(debug=True, share=False) | |