YajieXu's picture
Update app.py
523b5ec verified
raw
history blame
6.15 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool
import gradio as gr
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class GAIAAgent:
def __init__(self):
print("GAIAAgent initialized.")
self.model = gr.load("models/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", provider="novita")
self.search_tool = DuckDuckGoSearchTool() # optional if you still want to use search manually
def format_prompt(self, question: str, file_content: str = None) -> str:
prompt = (
"You are a helpful AI agent solving a question from the GAIA benchmark. "
"Respond only with the final answer."
)
if file_content:
prompt += f"\nAttached File Content:\n{file_content}\n"
prompt += f"\nQuestion: {question}\nAnswer:"
return prompt
def read_file(self, filename: str) -> str:
filepath = os.path.join("./", filename)
if filename.endswith(".txt") and os.path.exists(filepath):
with open(filepath, "r") as file:
return file.read()[:1000] # limit to 1000 chars
return ""
def __call__(self, question: str, file_name: str = None) -> str:
file_content = self.read_file(file_name) if file_name else None
prompt = self.format_prompt(question, file_content)
result = self.model(prompt) # directly call the Gradio-loaded model
return result.strip()
# class GAIAAgent:
# def __init__(self):
# print("GAIAAgent initialized.")
# self.model = gr.load("models/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", provider="novita")
# search_tool = DuckDuckGoSearchTool()
# self.agent = CodeAgent(model=model, tools=[search_tool])
# def format_prompt(self, question: str, file_content: str = None) -> str:
# prompt = (
# "You are a helpful AI agent solving a question from the GAIA benchmark. "
# "Respond only with the final answer."
# )
# if file_content:
# prompt += f"\nAttached File Content:\n{file_content}\n"
# prompt += f"\nQuestion: {question}\nAnswer:"
# return prompt
# def read_file(self, filename: str) -> str:
# filepath = os.path.join("./", filename)
# if filename.endswith(".txt") and os.path.exists(filepath):
# with open(filepath, "r") as file:
# return file.read()[:1000] # limit to 1000 chars
# return ""
# def __call__(self, question: str, file_name: str = None) -> str:
# file_content = self.read_file(file_name) if file_name else None
# prompt = self.format_prompt(question, file_content)
# result = self.agent.run(prompt)
# return result.strip()
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GAIAAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text, file_name)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Log in to your Hugging Face account.
2. Click the button to run the agent and submit answers.
3. Your score will be printed below.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("Launching GAIA agent app...")
demo.launch(debug=True, share=False)