Upload 5 files
Browse files- app.py +92 -0
- requirements.txt +8 -0
- resume_classification_model.pkl +3 -0
- resume_label_encoder.pkl +3 -0
- tfidf_vectorizer.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
|
7 |
+
# Load the necessary models
|
8 |
+
model = joblib.load("resume_classification_model.pkl")
|
9 |
+
tokenizer = joblib.load("resume_label_encoder.pkl")
|
10 |
+
sbert_model = SentenceTransformer('all-MiniLM-L6-v2')
|
11 |
+
|
12 |
+
# Set up the Streamlit page configuration
|
13 |
+
st.set_page_config(page_title="Multi Resume Analyzer", layout="centered")
|
14 |
+
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>π Multi Resume Analyzer</h1>", unsafe_allow_html=True)
|
15 |
+
|
16 |
+
# Input job description
|
17 |
+
jd = st.text_input("Enter the Job Description:")
|
18 |
+
|
19 |
+
# Initialize session state
|
20 |
+
if "text_blocks" not in st.session_state:
|
21 |
+
st.session_state.text_blocks = []
|
22 |
+
if "submitted" not in st.session_state:
|
23 |
+
st.session_state.submitted = False
|
24 |
+
if "message" not in st.session_state:
|
25 |
+
st.session_state.message = ""
|
26 |
+
if "text_input_key" not in st.session_state:
|
27 |
+
st.session_state.text_input_key = 0
|
28 |
+
|
29 |
+
# Show textarea and buttons if not submitted
|
30 |
+
if not st.session_state.submitted:
|
31 |
+
st.markdown("### βοΈ Enter or Paste Your Resume Below:")
|
32 |
+
text_input = st.text_area("Text Input", height=200, key=f"input_{st.session_state.text_input_key}")
|
33 |
+
|
34 |
+
col1, col2 = st.columns(2)
|
35 |
+
with col1:
|
36 |
+
if st.button("Next"):
|
37 |
+
if text_input.strip():
|
38 |
+
st.session_state.text_blocks.append(text_input.strip())
|
39 |
+
st.session_state.message = f"β
Resume block {len(st.session_state.text_blocks)} saved!"
|
40 |
+
st.session_state.text_input_key += 1
|
41 |
+
st.rerun()
|
42 |
+
else:
|
43 |
+
st.warning("Please enter some text before clicking Next.")
|
44 |
+
with col2:
|
45 |
+
if st.button("Submit"):
|
46 |
+
if text_input.strip():
|
47 |
+
st.session_state.text_blocks.append(text_input.strip())
|
48 |
+
st.session_state.submitted = True
|
49 |
+
st.rerun()
|
50 |
+
|
51 |
+
# Show feedback message after "Next"
|
52 |
+
if st.session_state.message:
|
53 |
+
st.success(st.session_state.message)
|
54 |
+
|
55 |
+
# After submission
|
56 |
+
if st.session_state.submitted and jd:
|
57 |
+
st.markdown("## β
Submission Complete!")
|
58 |
+
|
59 |
+
resumes = st.session_state.text_blocks
|
60 |
+
|
61 |
+
# SBERT embeddings
|
62 |
+
embeddings = sbert_model.encode(resumes) # one vector per resume
|
63 |
+
jd_embedding = sbert_model.encode([jd]) # job description embedding
|
64 |
+
|
65 |
+
# Cosine similarities
|
66 |
+
similarities = cosine_similarity(jd_embedding, embeddings)[0]
|
67 |
+
|
68 |
+
# Predict categories for all resumes
|
69 |
+
predicted_labels = model.predict(embeddings)
|
70 |
+
predicted_categories = tokenizer.inverse_transform(predicted_labels)
|
71 |
+
|
72 |
+
# Create DataFrame
|
73 |
+
df = pd.DataFrame({
|
74 |
+
"Resume": [f"Resume {i+1}" for i in range(len(resumes))],
|
75 |
+
"Index": list(range(len(resumes))),
|
76 |
+
"Score": similarities,
|
77 |
+
"Predicted Category": predicted_categories
|
78 |
+
})
|
79 |
+
|
80 |
+
# Ranking
|
81 |
+
df["Rank"] = df["Score"].rank(ascending=False, method='first').astype(int)
|
82 |
+
df = df.sort_values(by="Rank")
|
83 |
+
|
84 |
+
# Predicted category of top resume
|
85 |
+
top_resume_embedding = embeddings[df.iloc[0]["Index"]].reshape(1, -1)
|
86 |
+
top_pred = model.predict(top_resume_embedding)
|
87 |
+
top_category = tokenizer.inverse_transform(top_pred)[0]
|
88 |
+
st.success(f"π― Predicted Job Category for Best Match: **{top_category}**")
|
89 |
+
|
90 |
+
# Display full results table
|
91 |
+
st.markdown("### π Resume Analysis Results:")
|
92 |
+
st.dataframe(df[['Resume', 'Index', 'Score', 'Rank', 'Predicted Category']], width=700)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.32.2
|
2 |
+
pandas==2.2.1
|
3 |
+
numpy==1.26.4
|
4 |
+
scikit-learn==1.4.1.post1
|
5 |
+
joblib==1.4.0
|
6 |
+
sentence-transformers==2.6.1
|
7 |
+
transformers==4.39.3
|
8 |
+
torch==2.2.2
|
resume_classification_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d501ff491efb2c4cedb91c52b232a4702e43023fcc4857648f2e0b1918f549ad
|
3 |
+
size 77906
|
resume_label_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a575dafd246993e6ee551491e5b96de44c566db677a33abf48b159cbfbfbd738
|
3 |
+
size 633
|
tfidf_vectorizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaacc258a637621638a5b72460cc2706498e231bfb55a16f03a02743f5414690
|
3 |
+
size 146607
|