YAMITEK commited on
Commit
e7400eb
·
verified ·
1 Parent(s): fcab839

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -0
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ st.title("NLP pipeling")
5
+
6
+ def text_classificer():
7
+ text_classification = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
8
+ st.title("Text Classification")
9
+
10
+ text=st.text_input("Enter the text :")
11
+ if st.button("Classife"):
12
+ output=text_classification(text)
13
+ st.write(output[0]["label"])
14
+
15
+ def text_summarizer():
16
+ text_summary = pipeline("summarization", model="facebook/bart-large-cnn")
17
+ st.title("Text Summarizer")
18
+
19
+ text=st.text_input("Enter the text")
20
+ if st.button("summarised"):
21
+ st.write(text_summary(text)[0]['summary_text'])
22
+
23
+ def text_generator():
24
+ text_generat= pipeline("text-generation")
25
+ st.title("Text Generation")
26
+
27
+ text=st.text_input("Enter the text")
28
+ if st.button("generate"):
29
+ result=text_generat(text)
30
+ st.write(result[0]["generated_text"])
31
+ def name_enity():
32
+ name_enity=pipeline("ner")#, model="dbmdz/bert-large-cased-finetuned-conll03-english", grouped_entities=True)
33
+ st.title("Name Enity")
34
+
35
+ text=st.text_input("Enter the text")
36
+ if st.button("submit"):
37
+ st.write(name_enity(text)[0]["word"])
38
+
39
+ def question_answer():
40
+ question_answering = pipeline("question-answering", model="google-bert/bert-large-uncased-whole-word-masking-finetuned-squad")
41
+ st.title("Question & Answers")
42
+ content=st.text_input("Enter the Content")
43
+ ques=st.text_input("Enter the Question ")
44
+ if st.button("submit"):
45
+ result=question_answering({"question": ques,"context": content})
46
+ st.write(result["answer"])
47
+
48
+ def code_generator():
49
+ st.title("Code Generator")
50
+ code_generation = pipeline("text-generation", model="Salesforce/codegen-350M-mono")
51
+
52
+ text=st.text_input("Enter the text")
53
+ if st.button("submit"):
54
+ st.write(code_generation(text)[0]) #["generated_text"]
55
+
56
+
57
+ file_type=st.sidebar.radio("Select a page:",('Text Classification',"Text Summarizer","Text Generator",'Name Enity','Question-Answer'))# Code Generator"
58
+
59
+ if file_type=='Text Classification':
60
+ text_classificer()
61
+ elif file_type=="Text Summarizer":
62
+ text_summarizer()
63
+ elif file_type=="Text Generator":
64
+ text_generator()
65
+ elif file_type=='Name Enity':
66
+ name_enity()
67
+ elif file_type=='Question-Answer':
68
+ question_answer()
69
+ # elif file_type=="Code Generator":
70
+ # code_generator()
71
+ else:
72
+ st.write(file_type)