Spaces:
Runtime error
Runtime error
File size: 3,621 Bytes
cc36c46 88734c0 f4f893f cc36c46 88734c0 cc36c46 f4f893f cc36c46 88734c0 f4f893f 88734c0 f4f893f cc36c46 f4f893f cc36c46 f4f893f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# REF: https://gradio.app/named_entity_recognition/
from transformers import pipeline
import gradio as gr
model_name="xlm-roberta-base"
# model_name="roberta-large"
from transformers import AutoTokenizer, AutoModelForTokenClassification
label_list= ['literal',"metaphoric"]
label_dict_relations={ i : l for i, l in enumerate(label_list) }
PATH = "./saved-models/my_model"
model_metaphor_detection = AutoModelForTokenClassification.from_pretrained(PATH, id2label=label_dict_relations)
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipeline_metaphors=pipeline(
"ner",
model=model_metaphor_detection,
tokenizer=tokenizer,
aggregation_strategy="none",
# aggregation_strategy="simple",
)
examples = [
"It would change the trajectory of your legal career.",
"Washington and the media just explodes on you, you just don’t know where you are at the moment",
"Those statements are deeply concerning.",
]
# Demo usage
import pprint
detection_results = pipeline_metaphors("It would change the trajectory of your legal career.")
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(detection_results)
"""Example Output; aggregation_strategy="none"
[ { 'end': 2,
'entity': 'literal',
'index': 1,
'score': 0.99981445,
'start': 0,
'word': '▁It'},
{ 'end': 8,
'entity': 'literal',
'index': 2,
'score': 0.9999882,
'start': 3,
'word': '▁would'},
{ 'end': 15,
'entity': 'literal',
'index': 3,
'score': 0.6243065,
'start': 9,
'word': '▁change'},
{ 'end': 19,
'entity': 'literal',
'index': 4,
'score': 0.9999826,
'start': 16,
'word': '▁the'},
{ 'end': 27,
'entity': 'metaphoric',
'index': 5,
'score': 0.99631363,
'start': 20,
'word': '▁traject'},
{ 'end': 30,
'entity': 'metaphoric',
'index': 6,
'score': 0.9979997,
'start': 27,
'word': 'ory'},
{ 'end': 33,
'entity': 'literal',
'index': 7,
'score': 0.9996278,
'start': 31,
'word': '▁of'},
{ 'end': 38,
'entity': 'literal',
'index': 8,
'score': 0.99985147,
'start': 34,
'word': '▁your'},
{ 'end': 44,
'entity': 'literal',
'index': 9,
'score': 0.99984956,
'start': 39,
'word': '▁legal'},
{ 'end': 51,
'entity': 'literal',
'index': 10,
'score': 0.998919,
'start': 45,
'word': '▁career'},
{ 'end': 52,
'entity': 'literal',
'index': 11,
'score': 0.99775606,
'start': 51,
'word': '.'}]
"""
"""Example Output; aggregation_strategy="simple"
[ { 'end': 19,
'entity_group': 'literal',
'score': 0.9060229,
'start': 0,
'word': 'It would change the'},
{ 'end': 30,
'entity_group': 'metaphoric',
'score': 0.9971567,
'start': 20,
'word': 'trajectory'},
{ 'end': 52,
'entity_group': 'literal',
'score': 0.9992008,
'start': 31,
'word': 'of your legal career.'}]
"""
# exit(0)
def ner(text):
output = pipeline_metaphors(text)
# # change name
for x in output:
if 'entity_group' in x:
x['entity'] = x['entity_group']
return {"text": text, "entities": output}
demo = gr.Interface(ner,
gr.Textbox(placeholder="Enter sentence here..."),
gr.HighlightedText(),
examples=examples)
demo.launch() |